Skip to main content
Log in

Fluoro-Free navigated retrograde drilling of osteochondral lesions

  • Sports Traumatology
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Retrograde drilling of osteochondral lesions (OCLs) is a recommended, but demanding operative approach for revascularization of lesions in stage 1–3 according to Berndt and Harty after failed conservative treatment. The gold standard of intraoperative driller guidance is fluoroscopic control. Limitations are a 2D visualization of a 3D procedure and sometimes limited view of the OCL in fluoroscopy, leading to increased radiation exposure. A new image-free navigation procedure was evaluated for practicability and precision in first clinical applications.

Methods

In a period of 7 months, retrograde drillings were performed in eight patients (3x femoral condyle, 5x talus) using the new Fluoro-Free navigation procedure without rigidly fixed reference bases.

Results

In total, 29 retrograde drillings were performed without any technical problem. The overall mean operating time was 82.1 ± 29.3 min (34.6 ± 6.4 min for the standard arthroscopy and 11.2 ± 1.2 min per drill). Twenty-seven of 29 drillings hit the target with a 100% first-pass accuracy. Two complications during drilling (one navigation specific and one navigation independent) were observed.

Conclusion

The paper describes the promising first clinical applications of a new Fluoro-Free navigation procedure for the retrograde drilling of OCLs determined by arthroscopy. The benefit of that navigated drillings with a high rate of first-pass accuracy and no need for radiation exposure in contrast to standard techniques is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aigner N, Schneider W, Eberl V, Knahr K (2002) Core decompression in early stages of femoral head osteonecrosis—an MRI-controlled study. Int Orthop 26:31–35

    Article  CAS  PubMed  Google Scholar 

  2. Bale RJ, Hoser C, Rosenberger R, Rieger M, Benedetto KP, Fink C (2001) Osteochondral lesions of the talus: computer-assisted retrograde drilling—feasibility and accuracy in initial experiences. Radiology 218:278–282

    CAS  PubMed  Google Scholar 

  3. Berndt AL, Harty M (1959) Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am 41-A:988–1020

    CAS  PubMed  Google Scholar 

  4. Bonutti P, Dethmers D, Stiehl JB (2008) Case report: Femoral shaft fracture resulting from femoral tracker placement in navigated tka. Clin Orthop Relat Res 466:1499–1502

    Article  PubMed  Google Scholar 

  5. Citak M, Kendoff D, Kfuri M Jr, Pearle A, Krettek C, Hufner T (2007) Accuracy analysis of iso-c3d versus fluoroscopy-based navigated retrograde drilling of osteochondral lesions: a pilot study. J Bone Joint Surg Br 89:323–326

    Article  CAS  PubMed  Google Scholar 

  6. Citak M, Kendoff D, O’Loughlin PF, Pearle AD (2009) Heterotopic ossification post navigated high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 17:352–355

    Article  PubMed  Google Scholar 

  7. Fink C, Rosenberger RE, Bale RJ, Rieger M, Hackl W, Benedetto KP, Kunzel KH, Hoser C (2001) Computer-assisted retrograde drilling of osteochondral lesions of the talus. Orthopade 30:59–65

    Article  CAS  PubMed  Google Scholar 

  8. Gras F, Marintschev I, Mueller M, Klos K, Lindner R, Muckley T, Hofmann GO (2010) Arthroscopic-controlled fluoro-free navigation for retrograde drillings of osteochondral lesions of the talus. Foot Ankle Int: in press

  9. Gras F, Marintschev I, Wilharm A, Lindner R, Klos K, Muckley T, Hofmann GO (2010) Sustentaculum tali screw placement for calcaneus fractures—different navigation procedures compared to the conventional technique. Z Orthop Unfall 148:309–318

    Article  CAS  PubMed  Google Scholar 

  10. Li CH, Chen TH, Su YP, Shao PC, Lee KS, Chen WM (2008) Periprosthetic femoral supracondylar fracture after total knee arthroplasty with navigation system. J Arthroplasty 23:304–307

    Article  PubMed  Google Scholar 

  11. Loomer R, Fisher C, Lloyd-Smith R, Sisler J, Cooney T (1993) Osteochondral lesions of the talus. Am J Sports Med 21:13–19

    Article  CAS  PubMed  Google Scholar 

  12. Manzotti A, Confalonieri N, Pullen C (2008) Intra-operative tibial fracture during computer assisted total knee replacement: a case report. Knee Surg Sports Traumatol Arthrosc 16:493–496

    Article  CAS  PubMed  Google Scholar 

  13. Mont MA, Carbone JJ, Fairbank AC (1996) Core decompression versus nonoperative management for osteonecrosis of the hip. Clin Orthop Relat Res 324:169–178

    Article  PubMed  Google Scholar 

  14. Muller M, Gras F, Marintschev I, Muckley T, Hofmann GO (2009) Radiation- and reference base-free navigation procedure for placement of instruments and implants: application to retrograde drilling of osteochondral lesions of the knee joint. Comput Aided Surg 14:109–116

    PubMed  Google Scholar 

  15. O’Loughlin PF, Kendoff D, Pearle AD, Kennedy JG (2009) Arthroscopic-assisted fluoroscopic navigation for retrograde drilling of a talar osteochondral lesion. Foot Ankle Int 30:70–73

    Article  PubMed  Google Scholar 

  16. Ohnsorge JA, Portheine F, Mahnken AH, Prescher A, Wirtz DC, Siebert CH (2003) Computer-assisted retrograde drilling of osteochondritic lesions of the talus with the help of fluoroscopic navigation. Z Orthop Ihre Grenzgeb 141:452–458

    Article  CAS  PubMed  Google Scholar 

  17. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757

    CAS  PubMed  Google Scholar 

  18. Pridie K (1959) A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg Br 41:618–619

    Google Scholar 

  19. Richter M, Zech S (2008) 3d imaging (arcadis)-based computer assisted surgery (CAS) guided retrograde drilling in osteochondritis dissecans of the talus. Foot Ankle Int 29:1243–1248

    Article  PubMed  Google Scholar 

  20. Rosenberger RE, Fink C, Bale RJ, El Attal R, Muhlbacher R, Hoser C (2006) Computer-assisted minimally invasive treatment of osteochondrosis dissecans of the talus. Oper Orthop Traumatol 18:300–316

    Article  PubMed  Google Scholar 

  21. Schuman L, Struijs PA, van Dijk CN (2002) Arthroscopic treatment for osteochondral defects of the talus. Results at follow-up at 2 to 11 years. J Bone Joint Surg Br 84:364–368

    Article  CAS  PubMed  Google Scholar 

  22. Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ (1999) The microfracture technic in the management of complete cartilage defects in the knee joint. Orthopade 28:26–32

    CAS  PubMed  Google Scholar 

  23. Steinberg ME, Larcom PG, Strafford B, Hosick WB, Corces A, Bands RE, Hartman KE (2001) Core decompression with bone grafting for osteonecrosis of the femoral head. Clin Orthop Relat Res 326:71–78

    Article  Google Scholar 

  24. Takao M, Ochi M, Naito K, Uchio Y, Kono T, Oae K (2003) Arthroscopic drilling for chondral, subchondral, and combined chondral-subchondral lesions of the talar dome. Arthroscopy 19:524–530

    Article  PubMed  Google Scholar 

  25. Verhagen RA, Struijs PA, Bossuyt PM, van Dijk CN (2003) Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin 8:233–242

    Article  PubMed  Google Scholar 

  26. Wysocki RW, Sheinkop MB, Virkus WW, Della Valle CJ (2008) Femoral fracture through a previous pin site after computer-assisted total knee arthroplasty. J Arthroplasty 23:462–465

    Article  PubMed  Google Scholar 

  27. Zengerink M, Struijs PA, Tol JL, van Dijk CN (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 18:238–246

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The Friedrich Schiller University of Jena has received patent-related reimbursement from BrainLAB AG. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Gras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gras, F., Marintschev, I., Kahler, D.M. et al. Fluoro-Free navigated retrograde drilling of osteochondral lesions. Knee Surg Sports Traumatol Arthrosc 19, 55–59 (2011). https://doi.org/10.1007/s00167-010-1260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1260-8

Keywords

Navigation