Skip to main content
Log in

Epidemiology and imaging of the subchondral bone in articular cartilage repair

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Articular cartilage and the subchondral bone act as a functional unit. Following trauma, osteochondritis dissecans, osteonecrosis or osteoarthritis, this intimate connection may become disrupted. Osteochondral defects—the type of defects that extend into the subchondral bone—account for about 5% of all articular cartilage lesions. They are very often caused by trauma, in about one-third of the cases by osteoarthritis and rarely by osteochondritis dissecans. Osteochondral defects are predominantly located on the medial femoral condyle and also on the patella. Frequently, they are associated with lesions of the menisci or the anterior cruciate ligament. Because of the close relationship between the articular cartilage and the subchondral bone, imaging of cartilage defects or cartilage repair should also focus on the subchondral bone. Magnetic resonance imaging is currently considered to be the key modality for the evaluation of cartilage and underlying subchondral bone. However, the choice of imaging technique also depends on the nature of the disease that caused the subchondral bone lesion. For example, radiography is still the golden standard for imaging features of osteoarthritis. Bone scintigraphy is one of the most valuable techniques for early diagnosis of spontaneous osteonecrosis about the knee. A CT scan is a useful technique to rule out a possible depression of the subchondral bone plate, whereas a CT arthrography is highly accurate to evaluate the stability of the osteochondral fragment in osteochondritis dissecans. Particularly for the problem of subchondral bone lesions, image evaluation methods need to be refined for adequate and reproducible analysis. This article highlights recent studies on the epidemiology and imaging of the subchondral bone, with an emphasis on magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aaron RK, Dyke JP, Ciombor DM, Ballon D, Lee J, Jung E, Tung GA (2007) Perfusion abnormalities in subchondral bone associated with marrow edema, osteoarthritis, and avascular necrosis. Ann N Y Acad Sci 1117:124–137

    Article  PubMed  Google Scholar 

  2. Alparslan L, Winalski CS, Boutin RD, Minas T (2001) Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 5:345–363

    Article  CAS  PubMed  Google Scholar 

  3. Bailey AJ, Mansell JP (1997) Do subchondral bone changes exacerbate or precede articular cartilage destruction in osteoarthritis of the elderly? Gerontology 43:296–304

    Article  CAS  PubMed  Google Scholar 

  4. Bining HJ, Santos R, Andrews G, Forster BB (2009) Can T2 relaxation values and color maps be used to detect chondral damage utilizing subchondral bone marrow edema as a marker? Skeletal Radiol 38:459–465

    Article  PubMed  Google Scholar 

  5. Boegard T, Rudling O, Dahlstrom J, Dirksen H, Petersson IF, Jonsson K (1999) Bone scintigraphy in chronic knee pain: comparison with magnetic resonance imaging. Ann Rheum Dis 58:20–26

    Article  CAS  PubMed  Google Scholar 

  6. Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB (2006) MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthr Cartil 14:1081–1085

    Article  CAS  PubMed  Google Scholar 

  7. Casscells SW (1978) The torn or degenerated meniscus and its relationship to degeneration of the weight-bearing areas of the femur and tibia. Clin Orthop Relat Res 132:196–200

    PubMed  Google Scholar 

  8. Casscells SW (1985) The torn meniscus, the torn anterior cruciate ligament, and their relationship to degenerative joint disease. Arthroscopy 1:28–32

    Article  CAS  PubMed  Google Scholar 

  9. Chappard C, Peyrin F, Bonnassie A, Lemineur G, Brunet-Imbault B, Lespessailles E, Benhamou CL (2006) Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthr Cartil 14:215–223

    Article  CAS  PubMed  Google Scholar 

  10. Crema MD, Roemer FW, Marra MD, Niu J, Zhu Y, Lynch J, Lewis CE, El-Khoury G, Felson DT, Guermazi A (2008) 373 MRI-detected bone marrow edema-like lesions are strongly associated with subchondral cysts in patients with or at risk for knee osteoarthritis: The most study. Osteoarthritis and Cartilage. 2008 World Congress on Osteoarthritisheld 16: S160

  11. Crema MD, Roemer FW, Marra MD, Niu J, Lynch JA, Felson DT, Guermazi A (2009) Contrast-enhanced MRI of subchondral cysts in patients with or at risk for knee osteoarthritis: The MOST study. Eur J Radiol. doi: 10.1016/j.ejrad.2009.08.009

  12. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31, 516 knee arthroscopies. Arthroscopy 13:456–460

    CAS  PubMed  Google Scholar 

  13. Dandy DJ, Jackson RW (1975) Meniscectomy and chondromalacia of the femoral condyle. J Bone Joint Surg Am 57:1116–1119

    CAS  PubMed  Google Scholar 

  14. Dhollander AA, Huysse WC, Verdonk PC, Verstraete KL, Verdonk R, Verbruggen G, Almqvist KF (2009) MRI evaluation of a new scaffold-based allogenic chondrocyte implantation for cartilage repair. Eur J Radiol. doi: 10.1016/j.ejrad.2009.03.056

  15. Dieppe P, Cushnaghan J, Young P, Kirwan J (1993) Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis 52:557–563

    Article  CAS  PubMed  Google Scholar 

  16. Duc SR, Koch P, Schmid MR, Horger W, Hodler J, Pfirrmann CW (2007) Diagnosis of articular cartilage abnormalities of the knee: prospective clinical evaluation of a 3D water-excitation true FISP sequence. Radiology 243:475–482

    Article  PubMed  Google Scholar 

  17. El-Khoury GY, Alliman KJ, Lundberg HJ, Rudert MJ, Brown TD, Saltzman CL (2004) Cartilage thickness in cadaveric ankles: measurement with double-contrast multi-detector row CT arthrography versus MR imaging. Radiology 233:768–773

    Article  PubMed  Google Scholar 

  18. Felson DT, Nevitt MC, Yang M, Clancy M, Niu J, Torner JC, Lewis CE, Aliabadi P, Sack B, McCulloch C, Zhang Y (2008) A new approach yields high rates of radiographic progression in knee osteoarthritis. J Rheumatol 35:2047–2054

    PubMed  Google Scholar 

  19. Halbrecht JL, Klick BC (2006) Improvement in bone homeostasis following autologous chondrocyte implantation of the knee. Orthopedics 29:61–69

    PubMed  Google Scholar 

  20. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18:730–734

    PubMed  Google Scholar 

  21. Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F (2000) Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol 35:581–588

    Article  CAS  PubMed  Google Scholar 

  22. Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, Altman RD, Christiansen C (2008) Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthr Cartil 16:638–646

    Article  CAS  PubMed  Google Scholar 

  23. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed  Google Scholar 

  24. Kothari M, Guermazi A, von Ingersleben G, Miaux Y, Sieffert M, Block JE, Stevens R, Peterfy CG (2004) Fixed-flexion radiography of the knee provides reproducible joint space width measurements in osteoarthritis. Eur Radiol 14:1568–1573

    Article  PubMed  Google Scholar 

  25. Lecouvet FE, Malghem J, Maldague BE, Vande Berg BC (2005) MR imaging of epiphyseal lesions of the knee: current concepts, challenges, and controversies. Radiol Clin North Am 43:655–672

    Article  PubMed  Google Scholar 

  26. Lee JH, Dyke JP, Ballon D, Ciombor DM, Rosenwasser MP, Aaron RK (2009) Subchondral fluid dynamics in a model of osteoarthritis: use of dynamic contrast-enhanced magnetic resonance imaging. Osteoarthr Cartil 17:1350–1355

    Article  CAS  PubMed  Google Scholar 

  27. Levy AS, Lohnes J, Sculley S, LeCroy M, Garrett W (1996) Chondral delamination of the knee in soccer players. Am J Sports Med 24:634–639

    Article  CAS  PubMed  Google Scholar 

  28. Marlovits S, Striessnig G, Resinger CT, Aldrian SM, Vecsei V, Imhof H, Trattnig S (2004) Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 52:310–319

    Article  PubMed  Google Scholar 

  29. McCauley TR, Kornaat PR, Jee WH (2001) Central osteophytes in the knee: prevalence and association with cartilage defects on MR imaging. AJR Am J Roentgenol 176:359–364

    CAS  PubMed  Google Scholar 

  30. Merrick MV (1992) Investigation of joint disease. Eur J Nucl Med 19:894–901

    Article  CAS  PubMed  Google Scholar 

  31. Mithoefer K, Williams RJ 3rd, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 87:1911–1920

    Article  PubMed  Google Scholar 

  32. Mithofer K, Minas T, Peterson L, Yeon H, Micheli LJ (2005) Functional outcome of knee articular cartilage repair in adolescent athletes. Am J Sports Med 33:1147–1153

    Article  PubMed  Google Scholar 

  33. Mithofer K, Peterson L, Mandelbaum BR, Minas T (2005) Articular cartilage repair in soccer players with autologous chondrocyte transplantation: functional outcome and return to competition. Am J Sports Med 33:1639–1646

    Article  PubMed  Google Scholar 

  34. Mont MA, Baumgarten KM, Rifai A, Bluemke DA, Jones LC, Hungerford DS (2000) Atraumatic osteonecrosis of the knee. J Bone Joint Surg Am 82:1279–1290

    CAS  PubMed  Google Scholar 

  35. Muehleman C, Li J, Abe Y, Pfister B, Sah RL, Phipps R, Masuda K (2009) Effect of risedronate in a minipig cartilage defect model with allograft. J Orthop Res 27:360–365

    Article  PubMed  Google Scholar 

  36. Nishitani K, Shirai T, Kobayashi M, Kuroki H, Azuma Y, Nakagawa Y, Nakamura T (2009) Positive effect of alendronate on subchondral bone healing and subsequent cartilage repair in a rabbit osteochondral defect model. Am J Sports Med 37(Suppl 1):139S–147S

    Article  PubMed  Google Scholar 

  37. Noble J, Hamblen DL (1975) The pathology of the degenerate meniscus lesion. J Bone Joint Surg Br 57:180–186

    CAS  PubMed  Google Scholar 

  38. Omoumi P, Mercier GA, Lecouvet F, Simoni P, Vande Berg BC (2009) CT arthrography, MR arthrography, PET, and scintigraphy in osteoarthritis. Radiol Clin North Am 47:595–615

    Article  PubMed  Google Scholar 

  39. Radin ER, Paul IL, Rose RM (1972) Pathogenesis of primary osteoarthritis. Lancet 1:1395–1396

    Article  CAS  PubMed  Google Scholar 

  40. Ramnath RR, Kattapuram SV (2004) MR appearance of SONK-like subchondral abnormalities in the adult knee: SONK redefined. Skeletal Radiol 33:575–581

    Article  PubMed  Google Scholar 

  41. Rand T, Brossmann J, Pedowitz R, Ahn JM, Haghigi P, Resnick D (2000) Analysis of patellar cartilage. Comparison of conventional MR imaging and MR and CT arthrography in cadavers. Acta Radiol 41:492–497

    CAS  PubMed  Google Scholar 

  42. Roemer FW, Frobell R, Hunter DJ, Crema MD, Fischer W, Bohndorf K, Guermazi A (2009) MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthr Cartil 17:1115–1131

    Article  CAS  PubMed  Google Scholar 

  43. Roemer FW, Guermazi A, Javaid MK, Lynch JA, Niu J, Zhang Y, Felson DT, Lewis CE, Torner J, Nevitt MC (2009) Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST study. A longitudinal multicentre study of knee osteoarthritis. Ann Rheum Dis 68:1461–1465

    Article  CAS  PubMed  Google Scholar 

  44. Roemer FW, Neogi T, Nevitt MC, Felson DT, Zhu Y, Zhang Y, Lynch JA, Javaid MK, Crema MD, Torner J, Lewis CE, Guermazi A (2009) Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthritis Cartilage. doi: 10.1016/j.joca.2009.08.018

  45. Streitparth F, Schottle P, Schlichting K, Schell H, Fischbach F, Denecke T, Duda GN, Schroder RJ (2009) Osteochondral defect repair after implantation of biodegradable scaffolds: indirect magnetic resonance arthrography and histopathologic correlation. Acta Radiol 50:765–774

    Article  CAS  PubMed  Google Scholar 

  46. Trattnig S, Millington SA, Szomolanyi P, Marlovits S (2007) MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 17:103–118

    Article  CAS  PubMed  Google Scholar 

  47. Vande Berg B, Malghem J, Maldague B, Lecouvet F (2006) Multi-detector CT imaging in the postoperative orthopedic patient with metal hardware. Eur J Radiol 60:470–479

    Article  Google Scholar 

  48. Zamber RW, Teitz CC, McGuire DA, Frost JD, Hermanson BK (1989) Articular cartilage lesions of the knee. Arthroscopy 5:258–268

    Article  CAS  PubMed  Google Scholar 

  49. Zanetti M, Bruder E, Romero J, Hodler J (2000) Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 215:835–840

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Elke Dooley for help with the manuscript preparation. Supported in part by the Deutsche Forschungsgemeinschaft (DFG) and the Fonds National de la Recherche (FNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Madry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menetrey, J., Unno-Veith, F., Madry, H. et al. Epidemiology and imaging of the subchondral bone in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc 18, 463–471 (2010). https://doi.org/10.1007/s00167-010-1053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1053-0

Keywords

Navigation