Skip to main content
Log in

Tibial tunnel widening after bioresorbable poly-lactide calcium carbonate interference screw usage in ACL reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Developing bio-absorbable interference screws for anterior cruciate ligament (ACL) reconstruction has proven to be a challenging task. The aim of this study was to investigate the osteogenetic response of poly-lactide carbonate (PLC) interference screws in ACL reconstruction in humans. Ten patients (median age, 28 years) underwent arthroscopic ACL reconstruction with semitendinosus/gracilis tendon graft and a PLC interference screw. The patients were scanned with a multi-slice CT scanner 2 weeks and 1 year postoperatively. Fourteen days postoperatively a mean tunnel widening of 78% [52%; 110%] was observed. At 1-year follow-up, the mean tunnel widening was 128% [84%; 180%]. No sign of bone replacement or bone ingrowth was observed. Factors such as accelerated rehabilitation, micro-motions, and early screw degradation might be responsible for this large tunnel widening. Our results demonstrate the difficulty in translation of preclinical data. This study illustrates the need for extensive preclinical investigation of new materials for clinical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aerssens J, Boonen S, Lowet G, Dequeker J (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139:663–670

    Article  CAS  PubMed  Google Scholar 

  2. Ahlstrom M, Pekkinen M, Riehle U, Lamberg-Allardt C (2008) Extracellular calcium regulates parathyroid hormone-related peptide expression in osteoblasts and osteoblast progenitor cells. Bone 42:483–490

    Article  CAS  PubMed  Google Scholar 

  3. Barber FA (2005) Poly-d, l-lactide interference screws for anterior cruciate ligament reconstruction. Arthroscopy 21:804–808

    PubMed  Google Scholar 

  4. Barber FA, Dockery WD (2008) Long-term absorption of beta-tricalcium phosphate poly-l-lactic acid interference screws. Arthroscopy 24:441–447

    PubMed  Google Scholar 

  5. Brand JC Jr, Nyland J, Caborn DN, Johnson DL (2005) Soft-tissue interference fixation: bioabsorbable screw versus metal screw. Arthroscopy 21:911–916

    Article  PubMed  Google Scholar 

  6. Buck DC, Simonian PT, Larson RV, Borrow J, Nathanson DA (2004) Timeline of tibial tunnel expansion after single-incision hamstring anterior cruciate ligament reconstruction. Arthroscopy 20:34–36

    Article  PubMed  Google Scholar 

  7. Dujardin J, Vandenneucker H, Bellemans J (2008) Tibial cyst and intra-articular granuloma formation after anterior cruciate ligament reconstruction using polylactide carbonate osteoconductive interference screws. Arthroscopy 24:238–242

    Article  PubMed  Google Scholar 

  8. Field RA, Riley ML, Mello FC, Corbridge MH, Kotula AW (1974) Bone composition in cattle, pigs, sheep and poultry. J Anim Sci 39:493–499

    CAS  PubMed  Google Scholar 

  9. Fredenberg S, Reslow M, Axelsson A (2007) Effect of divalent cations on pore formation and degradation of poly(d, l-lactide-co-glycolide). Pharm Dev Technol 12:563–572

    Article  CAS  PubMed  Google Scholar 

  10. Fu K, Pack DW, Klibanov AM, Langer R (2000) Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res 17:100–106

    Article  CAS  PubMed  Google Scholar 

  11. Goodman SB (1994) The effects of micromotion and particulate materials on tissue differentiation. Bone chamber studies in rabbits. Acta Orthop Scand Suppl 258:1–43

    CAS  PubMed  Google Scholar 

  12. Hantes ME, Mastrokalos DS, Yu J, Paessler HH (2004) The effect of early motion on tibial tunnel widening after anterior cruciate ligament replacement using hamstring tendon grafts. Arthroscopy 20:572–580

    Article  PubMed  Google Scholar 

  13. Honda Y, Anada T, Kamakura S, Nakamura M, Sugawara S, Suzuki O (2006) Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line. Biochem Biophys Res Commun 345:1155–1160

    Article  CAS  PubMed  Google Scholar 

  14. Honda Y, Fitzsimmons RJ, Baylink DJ, Mohan S (1995) Effects of extracellular calcium on insulin-like growth factor II in human bone cells. J Bone Miner Res 10:1660–1665

    Article  CAS  PubMed  Google Scholar 

  15. Kaeding C, Farr J, Kavanaugh T, Pedroza A (2005) A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws. Arthroscopy 21:147–151

    Article  PubMed  Google Scholar 

  16. Kwak JH, Sim JA, Kim SH, Lee KC, Lee BK (2008) Delayed intra-articular inflammatory reaction due to poly-L-lactide bioabsorbable interference screw used in anterior cruciate ligament reconstruction. Arthroscopy 24:243–246

    Article  PubMed  Google Scholar 

  17. Lajtai G, Schmiedhuber G, Unger F, Aitzetmuller G, Klein M, Noszian I, Orthner E (2001) Bone tunnel remodeling at the site of biodegradable interference screws used for anterior cruciate ligament reconstruction: 5-year follow-up. Arthroscopy 17:597–602

    Article  CAS  PubMed  Google Scholar 

  18. Lembeck B, Wulker N (2005) Severe cartilage damage by broken poly-l-lactic acid (PLLA) interference screw after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 13:283–286

    Article  PubMed  Google Scholar 

  19. Lubowitz JH, Poehling GG (2008) Don’t know much biology: redux. Arthroscopy 24:127–129

    Article  PubMed  Google Scholar 

  20. Ma CB, Francis K, Towers J, Irrgang J, Fu FH, Harner CH (2004) Hamstring anterior cruciate ligament reconstruction: a comparison of bioabsorbable interference screw and endobutton-post fixation. Arthroscopy 20:122–128

    Article  PubMed  Google Scholar 

  21. Martinek V, Seil R, Lattermann C, Watkins SC, Fu FH (2001) The fate of the poly-l-lactic acid interference screw after anterior cruciate ligament reconstruction. Arthroscopy 17:73–76

    Article  CAS  PubMed  Google Scholar 

  22. Martini L, Fini M, Giavaresi G, Giardino R (2001) Sheep model in orthopedic research: a literature review. Comp Med 51:292–299

    CAS  PubMed  Google Scholar 

  23. Mastrokalos DS, Paessler HH (2008) Allergic reaction to biodegradable interference poly-l-lactic acid screws after anterior cruciate ligament reconstruction with bone–patellar tendon–bone graft. Arthroscopy 24:732–733

    Article  PubMed  Google Scholar 

  24. McGuire DA, Barber FA, Elrod BF, Paulos LE (1999) Bioabsorbable interference screws for graft fixation in anterior cruciate ligament reconstruction. Arthroscopy 15:463–473

    Article  CAS  PubMed  Google Scholar 

  25. Myers P, Logan M, Stokes A, Boyd K, Watts M (2008) Bioabsorbable versus titanium interference screws with hamstring autograft in anterior cruciate ligament reconstruction: a prospective randomized trial with 2-year follow-up. Arthroscopy 24:817–823

    Article  PubMed  Google Scholar 

  26. Nakade O, Takahashi K, Takuma T, Aoki T, Kaku T (2001) Effect of extracellular calcium on the gene expression of bone morphogenetic protein-2 and -4 of normal human bone cells. J Bone Miner Metab 19:13–19

    Article  CAS  PubMed  Google Scholar 

  27. Reinwald S, Burr D (2008) Review of nonprimate, large animal models for osteoporosis research. J Bone Miner Res 23:1353–1368

    Article  PubMed  Google Scholar 

  28. Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft–tunnel motion? Am J Sports Med 34:1790–1800

    Article  PubMed  Google Scholar 

  29. Segawa H, Omori G, Tomita S, Koga Y (2001) Bone tunnel enlargement after anterior cruciate ligament reconstruction using hamstring tendons. Knee Surg Sports Traumatol Arthrosc 9:206–210

    Article  CAS  PubMed  Google Scholar 

  30. Shenderova A, Burke TG, Schwendeman SP (1999) The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharm Res 16:241–248

    Article  CAS  PubMed  Google Scholar 

  31. Vuola J, Goransson H, Bohling T, Asko-Seljavaara S (1996) Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials 17:1761–1766

    Article  CAS  PubMed  Google Scholar 

  32. Vuola J, Taurio R, Goransson H, Asko-Seljavaara S (1998) Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis. Biomaterials 19:223–227

    Article  CAS  PubMed  Google Scholar 

  33. Walsh WR, Cotton NJ, Stephens P, Brunelle JE, Langdown A, Auld J, Vizesi F, Bruce W (2007) Comparison of poly-l-lactide and polylactide carbonate interference screws in an ovine anterior cruciate ligament reconstruction model. Arthroscopy 23:757–765

    Article  PubMed  Google Scholar 

  34. Warden WH, Chooljian D, Jackson DW (2008) Ten-year magnetic resonance imaging follow-up of bioabsorbable poly-l-lactic acid interference screws after anterior cruciate ligament reconstruction. Arthroscopy 24(370):e371–e373

    Google Scholar 

  35. Warden WH, Friedman R, Teresi LM, Jackson DW (1999) Magnetic resonance imaging of bioabsorbable polylactic acid interference screws during the first 2 years after anterior cruciate ligament reconstruction. Arthroscopy 15:474–480

    Article  CAS  PubMed  Google Scholar 

  36. Weiler A, Hoffmann RF, Stahelin AC, Helling HJ, Sudkamp NP (2000) Biodegradable implants in sports medicine: the biological base. Arthroscopy 16:305–321

    Article  CAS  PubMed  Google Scholar 

  37. Wilson TC, Kantaras A, Atay A, Johnson DL (2004) Tunnel enlargement after anterior cruciate ligament surgery. Am J Sports Med 32:543–549

    Article  PubMed  Google Scholar 

  38. Zantop T, Weimann A, Schmidtko R, Herbort M, Raschke MJ, Petersen W (2006) Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: in vitro study comparing titanium, poly-d,l-lactide, and poly-d,l-lactide-tricalcium phosphate screws. Arthroscopy 22:1204–1210

    Article  PubMed  Google Scholar 

  39. Zhu G, Mallery SR, Schwendeman SP (2000) Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide). Nat Biotechnol 18:52–57

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was financially supported by Smith and Nephew, Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casper Foldager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foldager, C., Jakobsen, B.W., Lund, B. et al. Tibial tunnel widening after bioresorbable poly-lactide calcium carbonate interference screw usage in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18, 79–84 (2010). https://doi.org/10.1007/s00167-009-0865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-009-0865-2

Keywords

Navigation