Skip to main content
Log in

Primary stability of tibial components in TKA: in vitro comparison of two cementing techniques

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

In spite of improvements in cementing technique, migration of tibial component remains a problem in total knee arthroplasty. This study compares the primary stability of tibial components using two different cementing techniques with roentgen stereophotogrammetric analysis (RSA) in vitro. A total of 20 tibia specimens were matched into two groups, 10 specimens per group. Cementing technique was randomized to each group. In the first group only the base and in the second group the base and stem were cemented. The implants and the tibial metaphysis were marked with markers for the RSA analysis. All specimens were tested with an axial load of 2,000 N for 1,000 and 10,000 cycles and RSA analysis was performed. Endpoints for radiosterometric analysis were maximum total point motion, maximum subsidence, lift off, rotation and translation along the x-, y-, and z-axes. After 1,000 and 10,000 cycles, no significant differences could be found, but two tibial components of the surface cementing group showed a migration of more than 2 mm defined as failure compared to six failed tibial components in the full cementing group (P = 0.068). This higher number of failed arthroplasties in the fully cemented prosthesis group demonstrates a disadvantageous load distribution in the tibia apophysis which can cause an early component loosening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adalberth G, Nilsson KG, Bystrom S et al (2001) All-polyethylene versus metal-backed and stemmed tibial components in cemented total knee arthroplasty. A prospective, randomised RSA study. J Bone Joint Surg Br 83B:825–831

    Article  Google Scholar 

  2. Adalberth G, Nilsson KG, Karrholm J et al (2002) Fixation of the tibial component using CMW-1 or Palacos bone cement with gentamicin: similar outcome in a randomized radiostereometric study of 51 total knee arthroplasties. Acta Orthop Scand 73:531–538

    Article  PubMed  Google Scholar 

  3. Arora J, Ogden AC (2005) Osteolysis in a surface-cemented, primary, modular Freeman–Samuelson total knee replacement. J Bone Joint Surg Br 87B:1502–1506

    Google Scholar 

  4. Berend ME, Small SR, Ritter MA et al (2009) The effects of bone resection depth and malalignment on strain in the proximal tibia after total knee arthroplasty. J Arthroplast. doi: 10.1016/j.arth.2009.01.021

  5. Bert JM, McShane M (1998) Is it necessary to cement the tibial stem in cemented total knee arthroplasty? Clin Orthop Relat Res 356:73–78

    Article  PubMed  Google Scholar 

  6. Bindelglass DF, Dorr LD (1998) Current concepts review: symmetry versus asymmetry in the design of total knee femoral components—an unresolved controversy. J Arthroplast 13:939–944

    Article  CAS  Google Scholar 

  7. Bourne RB, Finlay JB (1986) The influence of tibial component intramedullary stems and implant–cortex contact on the strain distribution of the proximal tibia following total knee arthroplasty. An in vitro study. Clin Orthop Relat Res 208:95–99

    PubMed  Google Scholar 

  8. Brooks PJ, Walker PS, Scott RD (1984) Tibial component fixation in deficient tibial bone stock. Clin Orthop Relat Res 184:302–308

    PubMed  Google Scholar 

  9. Buechel FF Sr, Buechel FF Jr, Pappas MJ et al (2002) Twenty-year evaluation of the New Jersey LCS Rotating Platform Knee Replacement. J Knee Surg 15:84–89

    PubMed  Google Scholar 

  10. Crowninshield RD, Jennings JD, Laurent ML et al (1998) Cemented femoral component surface finish mechanics. Clin Orthop Relat Res 355:90–102

    Article  PubMed  Google Scholar 

  11. Davies JP, Harris WH (1994) Tensile bonding strength of the cement–prosthesis interface. Orthopedics 17:171–173

    PubMed  CAS  Google Scholar 

  12. Fukuoka S, Yoshida K, Yamano Y (2000) Estimation of the migration of tibial components in total knee arthroplasty. A roentgen stereophotogrammetric analysis. J Bone Joint Surg Br 82B:222–227

    Article  Google Scholar 

  13. Green GV, Berend KR, Berend ME et al (2002) The effects of varus tibial alignment on proximal tibial surface strain in total knee arthroplasty: the posteromedial hot spot. J Arthroplast 17:1033–1039

    Article  Google Scholar 

  14. Hernandez-Vaquero D, Garcia-Sandoval MA, Fernandez-Carreira JM et al (2008) Influence of the tibial stem design on bone density after cemented total knee arthroplasty: a prospective seven-year follow-up study. Int Orthop 32:47–51

    Article  PubMed  Google Scholar 

  15. Hyldahl H, Regner L, Carlsson L et al (2005) All-polyethylene vs. metal-backed tibial component in total knee arthroplasty—a randomized RSA study comparing early fixation of horizontally and completely cemented tibial components: part 2. Completely cemented components: MB not superior to AP components. Acta Orthop 76:778–784

    Article  PubMed  Google Scholar 

  16. Incavo SJ, Ronchetti PJ, Howe JG et al (1994) Tibial plateau coverage in total knee arthroplasty. Clin Orthop Relat Res 299:81–85

    PubMed  Google Scholar 

  17. Johnson JA, Krug WH, Nahon D et al (1983) An evaluation of the load bearing capability of the proximal tibia with special interest in the design of knee implants. Trans Orthop Res Soc 8:403

    Google Scholar 

  18. Karrholm J, Snorrason F (1993) Subsidence, tip, and hump micromovements of noncoated ribbed femoral prostheses. Clin Orthop Relat Res 287:50–60

    PubMed  Google Scholar 

  19. Keating EM, Meding JB, Faris PM et al (2002) Long-term followup of nonmodular total knee replacements. Clin Orthop Relat Res 404:34–39

    Article  PubMed  Google Scholar 

  20. Lachiewicz PF, Soileau ES (2004) The rates of osteolysis and loosening associated with a modular posterior stabilized knee replacement. Results at five to fourteen years. J Bone Joint Surg Am 86A:525–530

    Google Scholar 

  21. Laskin RS (2001) The Genesis total knee prosthesis: a 10-year followup study. Clin Orthop Relat Res 388:95–102

    Article  PubMed  Google Scholar 

  22. Lemaire P, Pioletti DP, Meyer FM et al (1997) Tibial component positioning in total knee arthroplasty: bone coverage and extensor apparatus alignment. Knee Surg Sports Traumatol Arthrosc 5:251–257

    Article  PubMed  CAS  Google Scholar 

  23. Lonner JH, Klotz M, Levitz C et al (2001) Changes in bone density after cemented total knee arthroplasty: influence of stem design. J Arthroplast 16:107–111

    Article  CAS  Google Scholar 

  24. Luring C, Perlick L, Trepte C et al (2006) Micromotion in cemented rotating platform total knee arthroplasty: cemented tibial stem versus hybrid fixation. Arch Orthop Trauma Surg 126:45–48

    Article  PubMed  CAS  Google Scholar 

  25. Marcacci M, Soavi R, Loreti I et al (2001) Micromotion between the half bearings in the interax prosthesis: a roentgen stereophotogrammetric analysis. J Arthroplast 16:991–997

    Article  CAS  Google Scholar 

  26. Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3:51–61

    Article  PubMed  CAS  Google Scholar 

  27. Murase K, Crowninshield RD, Pedersen DR et al (1983) An analysis of tibial component design in total knee arthroplasty. J Biomech 16:13–22

    Article  PubMed  CAS  Google Scholar 

  28. Nilsson KG, Karrholm J (1993) Increased varus-valgus tilting of screw-fixated knee prostheses. Stereoradiographic study of uncemented versus cemented tibial components. J Arthroplasty 8:529–540

    Article  PubMed  CAS  Google Scholar 

  29. Nilsson KG, Karrholm J, Linder L (1995) Femoral component migration in total knee arthroplasty: randomized study comparing cemented and uncemented fixation of the Miller-Galante I design. J Orthop Res 13:347–356

    Article  PubMed  CAS  Google Scholar 

  30. Peters CL, Craig MA, Mohr RA et al (2003) Tibial component fixation with cement: full- versus surface-cementation techniques. Clin Orthop Relat Res 409:158–168

    Article  PubMed  Google Scholar 

  31. Pittman GT, Peters CL, Hines JL et al (2006) Mechanical bond strength of the cement–tibial component interface in total knee arthroplasty. J Arthroplast 21:883–888

    Article  Google Scholar 

  32. Reilly D, Walker PS, Ben-Dov M et al (1982) Effects of tibial components on load transfer in the upper tibia. Clin Orthop Relat Res 165:273–282

    PubMed  Google Scholar 

  33. Ritter MA, Herbst SA, Keating EM et al (1994) Radiolucency at the bone–cement interface in total knee replacement. The effects of bone–surface preparation and cement technique. J Bone Joint Surg Am 76A:60–65

    Google Scholar 

  34. Robertsson O, Knutson K, Lewold S et al (2001) The Swedish Knee Arthroplasty Register 1975–1997: an update with special emphasis on 41, 223 knees operated on in 1988–1997. Acta Orthop Scand 72:503–513

    Article  PubMed  CAS  Google Scholar 

  35. Ryd L (1986) Micromotion in knee arthroplasty. A roentgen stereophotogrammetric analysis of tibial component fixation. Acta Orthop Scand Suppl 220:1–80

    PubMed  CAS  Google Scholar 

  36. Ryd L (1992) Roentgen stereophotogrammetric analysis of prosthetic fixation in the hip and knee joint. Clin Orthop Relat Res 276:56–65

    PubMed  Google Scholar 

  37. Sathappan SS, Pang HN, Manoj A et al (2009) Does stress shielding occur with the use of long-stem prosthesis in total knee arthroplasty? Knee Surg Sports Traumatol Arthrosc 17:179–183

    Article  PubMed  Google Scholar 

  38. Sharkey PF, Hozack WJ, Rothman RH et al (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13

    Article  PubMed  Google Scholar 

  39. Stern SH, Wills RD, Gilbert JL (1997) The effect of tibial stem design on component micromotion in knee arthroplasty. Clin Orthop Relat Res 345:44–52

    Article  PubMed  Google Scholar 

  40. Verdonschot N, Huiskes R (1998) Surface roughness of debonded straight-tapered stems in cemented THA reduces subsidence but not cement damage. Biomaterials 19:1773–1779

    Article  PubMed  CAS  Google Scholar 

  41. Walker PS, Greene D, Reilly D et al (1981) Fixation of tibial components of knee prostheses. J Bone Joint Surg Am 63A:258–267

    Google Scholar 

  42. Westrich GH, Laskin RS, Haas SB et al (1994) Resection specimen analysis of tibial coverage in total knee arthroplasty. Clin Orthop Relat Res 309:163–175

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Anatomical Institute of the University of Duesseldorf for donating the tibia specimens. Furthermore we thank Smith & Nephew, Inc. and Heraeus Inc. for donating the required tibial components and bone cement.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Skwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skwara, A., Figiel, J., Knott, T. et al. Primary stability of tibial components in TKA: in vitro comparison of two cementing techniques. Knee Surg Sports Traumatol Arthrosc 17, 1199–1205 (2009). https://doi.org/10.1007/s00167-009-0849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-009-0849-2

Keywords

Navigation