Skip to main content
Log in

Hamstrings co-activation in ACL-deficient subjects during isometric whole-leg extensions

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

It has been reported that anterior cruciate ligament (ACL)-deficient subjects increase the level of hamstrings activation and this has been interpreted as a means to cope with increased anterior tibial laxity in the knee. This study aimed to establish to what extent co-activation strategies in ACL-deficient subjects are load level and knee angle dependent. Eleven chronic ACL-deficient and 15 control subjects were positioned in a range of postures and asked to exert a feedback controlled vertical ground reaction force (GRF; 30, 60% and maximum), while horizontal forces were not constrained. Surface electromyography of the leg muscles and GRF were measured. In postures with the knee over and in front of the ankle, ACL-deficient subjects generated, respectively, 2.4 and 5.1% MVC more hamstrings activation than control subjects. Enhanced hamstrings co-activation in ACL-deficient subjects was more apparent in extended than in flexed knee angles. For both ACL-deficient and control subjects, hamstrings co-activation was larger in males than in females. It is concluded that ACL-deficient subjects show a task dependent increase in hamstrings co-activation, but its clinical significance remains to be shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aagaard P, Simonsen EB, Andersen JL et al (2000) Antagonist muscle coactivation during isokinetic knee extension. Scand J Med Sci Sports 10:58–67

    Article  PubMed  CAS  Google Scholar 

  2. Aalbersberg S, Kingma I, Blankevoort L et al (2005) Co-contraction during static and dynamic knee extensions in ACL deficient subjects. J Electromyogr Kinesiol 15:349–357

    Article  PubMed  Google Scholar 

  3. Aalbersberg S, Kingma I, Ronsky JL et al (2005) Orientation of tendons in vivo with active and passive knee muscles. J Biomech 38:1780–1788

    Article  PubMed  Google Scholar 

  4. Akima H, Kubo K, Kanehisa H et al (2000) Leg-press resistance training during 20 days of 6 degrees head-down-tilt bed rest prevents muscle deconditioning. Eur J Appl Physiol Occup Physiol 82:30–38

    Article  CAS  Google Scholar 

  5. Berchuck M, Andriacchi TP, Bach BR et al (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72:871–877

    PubMed  CAS  Google Scholar 

  6. Beynnon BD, Fleming BC (1998) Anterior cruciate ligament strain in-vivo: a review of previous work. J Biomech 31:519–525

    Article  PubMed  CAS  Google Scholar 

  7. Beynnon BD, Fleming BC, Johnson RJ et al (1995) Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med 23:24–34

    Article  PubMed  CAS  Google Scholar 

  8. Boerboom AL, Hof AL, Halbertsma JP et al (2001) Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc 9:211–216

    Article  PubMed  CAS  Google Scholar 

  9. Chmielewski TL, Rudolph KS, Fitzgerald GK et al (2001) Biomechanical evidence supporting a differential response to acute ACL injury. Clin Biomech 16:586–591

    Article  CAS  Google Scholar 

  10. DeMorat G, Weinhold P, Blackburn T et al (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32:477–483

    Article  PubMed  Google Scholar 

  11. Dyhre-Poulsen P, Krogsgaard MR (2000) Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol 89:2191–2195

    PubMed  CAS  Google Scholar 

  12. Fleming BC, Renström PA, Ohlen G et al (2001) The gastrocnemius muscle is an antagonist of the anterior cruciate ligament. J Orthop Res 19:1178–1184

    Article  PubMed  CAS  Google Scholar 

  13. Hagood S, Solomonow M, Baratta R et al (1990) The effect of joint velocity on the contribution of the antagonist musculature to knee stiffness and laxity. Am J Sports Med 18:182–187

    Article  PubMed  CAS  Google Scholar 

  14. Heijne A, Fleming BC, Renstrom PA et al (2004) Strain on the anterior cruciate ligament during closed kinetic chain exercises. Med Sci Sports Exerc 36:935–941

    Article  PubMed  Google Scholar 

  15. Hermens HJ, Freriks BF, Merletti R et al (1999) SENIAM 8—European recommendations for surface electromyography. Roessingh Research and Development, Enschede

    Google Scholar 

  16. Hewett TE, Myer GD, Zazulak BT (2008) Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. J Sci Med Sport 11:452–459

    Article  PubMed  Google Scholar 

  17. Irrgang JJ, Anderson AF, Boland AL et al (2001) Development and validation of the International Knee Documentation Committee Subjective Knee Form. Am J Sports Med 29:600–613

    PubMed  CAS  Google Scholar 

  18. Kalund S, Sinkjaer T, Arendt-Nielsen L et al (1990) Altered timing of hamstring muscle action in anterior cruciate ligament deficient patients. Am J Sports Med 18:245–248

    Article  PubMed  CAS  Google Scholar 

  19. Keays SL, Bullock-Saxton J, Keays AC (2000) Strength and function before and after anterior cruciate ligament reconstruction. Clin Orthop Relat Res 373:174–183

    Article  PubMed  Google Scholar 

  20. Kellis E, Arabatzi F, Papadopoulos C (2003) Muscle co-activation around the knee in drop jumping using the co-contraction index. J Electromyogr Kinesiol 13:229–238

    Article  PubMed  CAS  Google Scholar 

  21. Kessler MA, Behrend H, Henz S et al (2008) Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc 16:442–448

    Article  PubMed  CAS  Google Scholar 

  22. Kvist J, Karlberg C, Gerdle B et al (2001) Anterior tibial translation during different isokinetic quadriceps torque in anterior cruciate ligament deficient and nonimpaired individuals. J Orthop Sports Phys Ther 31:4–15

    PubMed  CAS  Google Scholar 

  23. Nagano Y, Ida H, Akai M et al (2007) Gender differences in knee kinematics and muscle activity during single limb drop landing. Knee 14:218–223

    Article  PubMed  Google Scholar 

  24. O’Connor JJ (1993) Can muscle co-contraction protect knee ligaments after injury or repair? J Bone Joint Surg Br 75:41–48

    PubMed  Google Scholar 

  25. Roberts CS, Rash GS, Honaker JT et al (1999) A deficient anterior cruciate ligament does not lead to quadriceps avoidance gait. Gait Posture 10:189–199

    Article  PubMed  CAS  Google Scholar 

  26. Roberts D, Friden T, Zatterstrom R et al (1999) Proprioception in people with anterior cruciate ligament-deficient knees: Comparison of symptomatic and asymptomatic patients. J Orthop Sports Phys Ther 29:587–594

    PubMed  CAS  Google Scholar 

  27. Solomonow M, Baratta R, Zhou BH et al (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15:207–213

    Article  PubMed  CAS  Google Scholar 

  28. Solomonow M, Krogsgaard M (2001) Sensorimotor control of knee stability. A review. Scand J Med Sci Sports 11:64–80

    Article  PubMed  CAS  Google Scholar 

  29. Stergiou N, Ristanis S, Moraiti C et al (2007) Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees: a theoretical proposition for the development of osteoarthritis. Sports Med 37:601–613

    Article  PubMed  Google Scholar 

  30. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49

    PubMed  Google Scholar 

  31. Torry MR, Decker MJ, Ellis HB et al (2004) Mechanisms of compensating for anterior cruciate ligament deficiency during gait. Med Sci Sports Exerc 36:1403–1412

    Article  PubMed  Google Scholar 

  32. Wexler G, Hurwitz DE, Bush-Joseph CA et al (1998) Functional gait adaptations in patients with anterior cruciate ligament deficiency over time. Clin Orthop Relat Res 348:166–175

    Article  PubMed  Google Scholar 

  33. Williams GN, Snyder-Mackler L, Barrance PJ et al (2005) Quadriceps femoris muscle morphology and function after ACL injury: a differential response in copers versus non-copers. J Biomech 38:685–693

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jiska van Kempen and Linda Faber for their assistance with the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idsart Kingma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aalbersberg, S., Kingma, I. & van Dieën, J.H. Hamstrings co-activation in ACL-deficient subjects during isometric whole-leg extensions. Knee Surg Sports Traumatol Arthrosc 17, 946–955 (2009). https://doi.org/10.1007/s00167-009-0802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-009-0802-4

Keywords

Navigation