Skip to main content
Log in

Biomechanics of the goat three bundle anterior cruciate ligament

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The goat is a widely used animal model for basic research on the anterior cruciate ligament (ACL), but the biomechanical role of the different bundles [intermediate (IM), anteromedial (AM), posterolateral (PL)] of the ACL is unclear. Therefore, the aim of this study is to describe the biomechanical function of the different bundles and evaluate its use for a double bundle ACL reconstruction model. A CASPAR Stäubli RX90 robot with a six degree-of-freedom load cell was used for measurement of anterior tibial translation (ATT) (mm) and in situ forces (N) at 30° (full extension), 60°, 90° as well as rotational testing at 30° in 14 paired goat knees before and after each bundle was cut. When the AM-bundle was cut, the ATT increased significantly at 60° and 90° of flexion (p < 0.05). When the PL-bundle was cut, the ATT increased only at 30°. However, most load was transferred through the big AM-bundle while the PL-bundle shared significant load only at 30°, with only minimal contribution from the IM-bundle at all flexion degrees. The observed biomechanical results in this study are similar to the human ACL observed previously in the literature. Though anatomically discernible, the IM-bundle plays only an inferior role in ATT and might be neglected as a separate bundle during reconstruction. The goat ACL shows some differences to the human ACL, whereas the main functions of the ACL bundles are similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramowitch SD, Papageorgiou CD, Withrow JD, Gilbert TW, Woo SL (2003) The effect of initial graft tension on the biomechanical properties of a healing ACL replacement graft: a study in goats. J Orthop Res 21:708–715. doi:10.1016/S0736-0266(02)00265-6

    Article  PubMed  Google Scholar 

  2. Amis AA, Dawkins GP (1991) Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br 73:260–267

    PubMed  CAS  Google Scholar 

  3. Brucker PU, Lorenz S, Imhoff AB (2006) Aperture fixation in arthroscopic anterior cruciate ligament double-bundle reconstruction. Arthroscopy 22:1250.e1–1250.e6

    Google Scholar 

  4. Chhabra A, Starman JS, Ferretti M, Vidal AF, Zantop T, Fu FH (2006) Anatomic, radiographic, biomechanical, and kinematic evaluation of the anterior cruciate ligament and its two functional bundles. J Bone Joint Surg Am 88(Suppl 4):2–10. doi:10.2106/JBJS.F.00616

    Article  PubMed  Google Scholar 

  5. Cummings JF, Grood ES, Levy MS, Korvick DL, Wyatt R, Noyes FR (2002) The effects of graft width and graft laxity on the outcome of caprine anterior cruciate ligament reconstruction. J Orthop Res 20:338–345. doi:10.1016/S0736-0266(01)00119-X

    Article  PubMed  CAS  Google Scholar 

  6. Ekdahl M, Wang JH, Ronga M, Fu FH (2008) Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:935–947. doi:10.1007/s00167-008-0584-0

    Article  PubMed  Google Scholar 

  7. Fleming BC, Abate JA, Peura GD, Beynnon BD (2001) The relationship between graft tensioning and the anterior-posterior laxity in the anterior cruciate ligament reconstructed goat knee. J Orthop Res 19:841–844. doi:10.1016/S0736-0266(01)00020-1

    Article  PubMed  CAS  Google Scholar 

  8. Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22:85–89. doi:10.1016/S0736-0266(03)00133-5

    Article  PubMed  Google Scholar 

  9. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382. doi:10.1177/0363546503258880

    Article  PubMed  Google Scholar 

  10. Gupte CM, Bull AM, Murray R, Amis AA (2007) Comparative anatomy of the meniscofemoral ligament in humans and some domestic mammals. Anat Histol Embryol 36:47–52. doi:10.1111/j.1439-0264.2006.00718.x

    Article  PubMed  CAS  Google Scholar 

  11. Harris NL, Indelicato PA, Bloomberg MS, Meister K, Wheeler DL (2002) Radiographic and histologic analysis of the tibial tunnel after allograft anterior cruciate ligament reconstruction in goats. Am J Sports Med 30:368–373

    PubMed  Google Scholar 

  12. Holden JP, Grood ES, Cummings JF (1995) Factors affecting sensitivity of a transducer for measuring anterior cruciate ligament force. J Biomech 28:99–102. doi:10.1016/0021-9290(95)80011-5

    Article  PubMed  CAS  Google Scholar 

  13. Holden JP, Grood ES, Korvick DL, Cummings JF, Butler DL, Bylski-Austrow DI (1994) In vivo forces in the anterior cruciate ligament: direct measurements during walking and trotting in a quadruped. J Biomech 27:517–526. doi:10.1016/0021-9290(94)90063-9

    Article  PubMed  CAS  Google Scholar 

  14. Jackson DW, Grood ES, Arnoczky SP, Butler DL, Simon TM (1987) Freeze dried anterior cruciate ligament allografts. Preliminary studies in a goat model. Am J Sports Med 15:295–303. doi:10.1177/036354658701500401

    Article  PubMed  Google Scholar 

  15. Jackson DW, Schreck P, Jacobson S, Simon TM (1999) Reduced anterior tibial translation associated with adaptive changes in the anterior cruciate ligament-deficient joint: goat model. J Orthop Res 17:810–816. doi:10.1002/jor.1100170604

    Article  PubMed  CAS  Google Scholar 

  16. Jarvela T, Moisala AS, Sihvonen R, Jarvela S, Kannus P, Jarvinen M (2008) Double-bundle anterior cruciate ligament reconstruction using hamstring autografts and bioabsorbable interference screw fixation: prospective, randomized, clinical study with 2-year results. Am J Sports Med 36:290–297. doi:10.1177/0363546507308360

    Article  PubMed  Google Scholar 

  17. LaPrade RF, Kimber KA, Wentorf FA, Olson EJ (2006) Anatomy of the posterolateral aspect of the goat knee. J Orthop Res 24:141–148. doi:10.1002/jor.20032

    Article  PubMed  Google Scholar 

  18. Lewis JL, Poff BC, Smith JJ, Lindquist C, Engebretsen L, Lew WD (1994) Method for establishing and measuring in vivo forces in an anterior cruciate ligament composite graft: response to differing levels of load sharing in a goat model. J Orthop Res 12:780–788. doi:10.1002/jor.1100120605

    Article  PubMed  CAS  Google Scholar 

  19. Lundberg WR, Lewis JL, Smith JJ et al (1997) In vivo forces during remodeling of a two-segment anterior cruciate ligament graft in a goat model. J Orthop Res 15:645–651. doi:10.1002/jor.1100150503

    Article  PubMed  CAS  Google Scholar 

  20. Ng GY, Oakes BW, Deacon OW, McLean ID, Eyre DR (1996) Long-term study of the biochemistry and biomechanics of anterior cruciate ligament-patellar tendon autografts in goats. J Orthop Res 14:851–856. doi:10.1002/jor.1100140602

    Article  PubMed  CAS  Google Scholar 

  21. Oster DM, Grood ES, Feder SM, Butler DL, Levy MS (1992) Primary and coupled motions in the intact and the ACL-deficient knee: an in vitro study in the goat model. J Orthop Res 10:476–484. doi:10.1002/jor.1100100403

    Article  PubMed  CAS  Google Scholar 

  22. Papageorgiou CD, Ma CB, Abramowitch SD, Clineff TD, Woo SL (2001) A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model. Am J Sports Med 29:620–626

    PubMed  CAS  Google Scholar 

  23. Perry J (1992) Gait analysis: normal and pathological function. SLACK Incorporated, Thorofare

    Google Scholar 

  24. Powers DL, Jacob PA, Drews MJ (1991) Anatomical reconstruction of the anterior cruciate ligament in goats. J Invest Surg 4:191–202. doi:10.3109/08941939109140779

    Article  PubMed  CAS  Google Scholar 

  25. Radford WJ, Amis AA, Kempson SA, Stead AC, Camburn M (1994) A comparative study of single- and double-bundle ACL reconstructions in sheep. Knee Surg Sports Traumatol Arthrosc 2:94–99. doi:10.1007/BF01476480

    Article  PubMed  CAS  Google Scholar 

  26. Ronga M, Muriuki M, Ekdahl M, Smolinski P, Fu FH (2008) Anatomical description of the anterior cruciate ligament in goat knee. Knee Surg Sports Traumatol Arthrosc 16:S42

    Google Scholar 

  27. Scheffler SU, Unterhauser FN, Weiler A (2008) Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:834–842. doi:10.1007/s00167-008-0560-8

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz HE, Matava MJ, Proch FS et al (2006) The effect of gamma irradiation on anterior cruciate ligament allograft biomechanical and biochemical properties in the caprine model at time zero and at 6 months after surgery. Am J Sports Med 34:1747–1755. doi:10.1177/0363546506288851

    Article  PubMed  Google Scholar 

  29. Steckel H, Starman JS, Baums MH, Klinger HM, Schultz W, Fu FH (2007) The double-bundle technique for anterior cruciate ligament reconstruction: a systematic overview. Scand J Med Sci Sports 17:99–108

    PubMed  CAS  Google Scholar 

  30. Takai S, Woo SL, Livesay GA, Adams DJ, Fu FH (1993) Determination of the in situ loads on the human anterior cruciate ligament. J Orthop Res 11:686–695. doi:10.1002/jor.1100110511

    Article  PubMed  CAS  Google Scholar 

  31. Tsuda E, Fukuda Y, Loh JC, Debski RE, Fu FH, Woo SL (2002) The effect of soft-tissue graft fixation in anterior cruciate ligament reconstruction on graft-tunnel motion under anterior tibial loading. Arthroscopy 18:960–967. doi:10.1053/jars.2002.36112

    Article  PubMed  Google Scholar 

  32. Xerogeanes JW, Fox RJ, Takeda Y et al (1998) A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann Biomed Eng 26:345–352. doi:10.1114/1.91

    Article  PubMed  CAS  Google Scholar 

  33. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

  34. Zantop T, Ferretti M, Bell KM, Brucker PU, Gilbertson L, Fu FH (2008) Effect of tunnel-graft length on the biomechanics of anterior cruciate ligament-reconstructed knees: intra-articular study in a goat model. Am J Sports Med 36(11):2158–2166

    Article  PubMed  Google Scholar 

  35. Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223–227. doi:10.1177/0363546506294571

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The support of the Albert B. Ferguson, Jr. MD Orthopaedic Fund of The Pittsburgh Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie H. Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tischer, T., Ronga, M., Tsai, A. et al. Biomechanics of the goat three bundle anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 17, 935–940 (2009). https://doi.org/10.1007/s00167-009-0784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-009-0784-2

Keywords

Navigation