Skip to main content
Log in

Evaluation of lesion in a spontaneous osteonecrosis of the knee using 18F-fluoride positron emission tomography

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Positron-emission tomography (PET) imaging has several advantages over conventional scintigraphy, including a high spatial resolution and the ability to quantify disease progression. Recently, 18F-fluoride PET has been applied to the evaluation of malignant tumors and musculoskeletal disorders. In our current study, spontaneous osteonecrosis of the knee (SONK) was visualized using this technique. We determined whether PET images can reveal SONK lesions, whether there were significant differences in the maximum standardized uptake value (SUVmax) among each of the SONK stages, and finally if there was any correlation between the maximum SUVmax value and size of the SONK lesion measured both by radiography and MRI. Fourteen knees from 13 patients diagnosed with SONK were imaged using a PET scanner. In all cases, PET showed an accumulation of 18F-fluoride in the medial condyle. The SUVmax ranged from 8.6 to 23.7 with an average of 15.1 ± 3.7 and was measured at different disease stages with an average of 12.4 ± 5.9 in Stage 2 (n = 5), 16.3 ± 1.4 in Stage 3 (n = 4), and 16.8 ± 4.3 (n = 5) in Stage 4 lesions. There were no significant differences in these measurements between the SONK stages. However, a significant positive correlation between the SUVmax and lesion size, including the surface area of the lesion (r 2 = 0.692, P = 0.0002) and the condyle width ratio (r 2 = 0.365, P = 0.022), was found. The approximate volumes of the lesions measured by MRI had an average of 4.8 ± 3.1 cm3, and also showed a significant correlation with the SUVmax (r 2 = 0.853, P < 0.0001). Hence, our present results indicate that a high SUV is indicative of a large SONK lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aglietti P, Insall JN, Buzzi R, Deschamps G (1983) Idiopathic osteonecrosis of the knee. Aetiology, prognosis and treatment. J Bone Joint Surg Br 65:588–597

    PubMed  CAS  Google Scholar 

  2. Ahlback S, Bauer GC, Bohne WH (1968) Spontaneous osteonecrosis of the knee. Arthritis Rheum 11:705–733

    Article  PubMed  CAS  Google Scholar 

  3. al-Rowaih A, Bjorkengren A, Egund N, Lindstrand A, Wingstrand H, Thorngren KG (1993) Size of osteonecrosis of the knee. Clin Orthop Relat Res (297):68–75

  4. Bjorkengren AG, AlRowaih A, Lindstrand A, Wingstrand H, Thorngren KG, Pettersson H (1990) Spontaneous osteonecrosis of the knee: value of MR imaging in determining prognosis. AJR Am J Roentgenol 154:331–336

    PubMed  CAS  Google Scholar 

  5. Blau M, Ganatra R, Bender MA (1972) 18 F-fluoride for bone imaging. Semin Nucl Med 2:31–37

    Article  PubMed  CAS  Google Scholar 

  6. Cook GJ, Fogelman I (2001) Detection of bone metastases in cancer patients by 18F-fluoride and 18F-fluorodeoxyglucose positron emission tomography. Q J Nucl Med 45:47–52

    PubMed  CAS  Google Scholar 

  7. Cruess RL (1986) Osteonecrosis of bone. Current concepts as to etiology and pathogenesis. Clin Orthop Relat Res (208):30–39

  8. Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, Satyamurthy N, Barrio JR, Phelps ME (1992) Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 33:633–642

    PubMed  CAS  Google Scholar 

  9. Hetzel M, Arslandemir C, Konig HH, Buck AK, Nussle K, Glatting G, Gabelmann A, Hetzel J, Hombach V, Schirrmeister H (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res 18:2206–2214

    Article  PubMed  Google Scholar 

  10. Hsu WK, Feeley BT, Krenek L, Stout DB, Chatziioannou AF, Lieberman JR (2007) The use of (18)F-fluoride and (18)F-FDG PET scans to assess fracture healing in a rat femur model. Eur J Nucl Med Mol Imaging 34(8):1291–1301

    Article  PubMed  CAS  Google Scholar 

  11. Installe J, Nzeusseu A, Bol A, Depresseux G, Devogelaer JP, Lonneux M (2005) (18)F-fluoride PET for monitoring therapeutic response in Paget’s disease of bone. J Nucl Med 46:1650–1658

    PubMed  CAS  Google Scholar 

  12. Kantor H (1987) Bone marrow pressure in osteonecrosis of the femoral condyle (Ahlback’s disease). Arch Orthop Trauma Surg 106:349–352

    Article  PubMed  CAS  Google Scholar 

  13. Koshino T (1982) The treatment of spontaneous osteonecrosis of the knee by high tibial osteotomy with and without bone-grafting or drilling of the lesion. J Bone Joint Surg Am 64:47–58

    PubMed  CAS  Google Scholar 

  14. Lecouvet FE, van de Berg BC, Maldague BE, Lebon CJ, Jamart J, Saleh M, Noel H, Malghem J (1998) Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging. AJR Am J Roentgenol 170:71–77

    PubMed  CAS  Google Scholar 

  15. Lotke PA, Abend JA, Ecker ML (1982) The treatment of osteonecrosis of the medial femoral condyle. Clin Orthop Relat Res (171):109–116

  16. Lotke PA, Ecker ML (1988) Osteonecrosis of the knee. J Bone Joint Surg Am 70:470–473

    PubMed  CAS  Google Scholar 

  17. Lotke PA, Ecker ML, Alavi A (1977) Painful knees in older patients: radionuclide diagnosis of possible osteonecrosis with spontaneous resolution. J Bone Joint Surg Am 59:617–621

    PubMed  CAS  Google Scholar 

  18. Marti CB, Rodriguez M, Zanetti M, Romero J (2000) Spontaneous osteonecrosis of the medial compartment of the knee: a MRI follow-up after conservative and operative treatment, preliminary results. Knee Surg Sports Traumatol Arthrosc 8:83–88

    Article  PubMed  CAS  Google Scholar 

  19. Mont MA, Baumgarten KM, Rifai A, Bluemke DA, Jones LC, Hungerford DS (2000) Atraumatic osteonecrosis of the knee. J Bone Joint Surg Am 82:1279–1290

    PubMed  CAS  Google Scholar 

  20. Muheim G, Bohne WH (1970) Prognosis in spontaneous osteonecrosis of the knee. Investigation by radionuclide scintimetry and radiography. J Bone Joint Surg Br 52:605–612

    PubMed  CAS  Google Scholar 

  21. Nakamura H, Masuko K, Yudoh K, Kato T, Nishioka K, Sugihara T, Beppu M (2007) Positron emission tomography with (18)F-FDG in osteoarthritic knee. Osteoarthritis Cartilage 15(6):673–681

    Article  PubMed  CAS  Google Scholar 

  22. Norman A, Baker ND (1978) Spontaneous osteonecrosis of the knee and medial meniscal tears. Radiology 129:653–656

    PubMed  CAS  Google Scholar 

  23. Ovadia D, Metser U, Lievshitz G, Yaniv M, Wientroub S, Even-Sapir E (2007) Back pain in adolescents: assessment with integrated 18F-fluoride positron-emission tomography-computed tomography. J Pediatr Orthop 27:90–93

    PubMed  Google Scholar 

  24. Rozing PM, Insall J, Bohne WH (1980) Spontaneous osteonecrosis of the knee. J Bone Joint Surg Am 62:2–7

    PubMed  CAS  Google Scholar 

  25. Saito T, Takeuchi R, Mitsuhashi S, Uesugi M, Yoshida T, Koshino T (2002) Use of joint fluid analysis for determining cartilage damage in osteonecrosis of the knee. Arthritis Rheum 46:1813–1819

    Article  PubMed  Google Scholar 

  26. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, Neumaier B, Trager H, Nussle K, Reske SN (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40:1623–1629

    PubMed  CAS  Google Scholar 

  27. Sorensen J, Michaelsson K, Strand H, Sundelin S, Rahme H (2006) Long-standing increased bone turnover at the fixation points after anterior cruciate ligament reconstruction: a positron emission tomography (PET) study of 8 patients. Acta Orthop 77:921–925

    Article  PubMed  Google Scholar 

  28. Stocklin GL (1998) Is there a future for clinical fluorine-18 radiopharmaceuticals (excluding FDG)? Eur J Nucl Med 25:1612–1616

    PubMed  CAS  Google Scholar 

  29. Ullmark G, Sorensen J, Langstrom B, Nilsson O (2007) Bone regeneration 6 years after impaction bone grafting A PET analysis. Acta Orthop 78:201–205

    Article  PubMed  Google Scholar 

  30. Wang GJ (1977) Cortisone-induced intrafemoral head pressure change and its responsse to a drilling decompression method. Clin Orthop 159:274–278

    Google Scholar 

  31. Yamamoto T, Bullough PG (2000) Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am 82:858–866

    Article  PubMed  CAS  Google Scholar 

  32. Yates PJ, Calder JD, Stranks GJ, Conn KS, Peppercorn D, Thomas NP (2007) Early MRI diagnosis and non-surgical management of spontaneous osteonecrosis of the knee. Knee 14:112–116

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

The authors declared that they do not have any financial and personal relationship with other people or organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Aratake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aratake, M., Yoshifumi, T., Takahashi, A. et al. Evaluation of lesion in a spontaneous osteonecrosis of the knee using 18F-fluoride positron emission tomography. Knee Surg Sports Traumatol Arthr 17, 53–59 (2009). https://doi.org/10.1007/s00167-008-0641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-008-0641-8

Keywords

Navigation