Skip to main content
Log in

Tibial aperture bone disruption after retrograde versus antegrade tibial tunnel drilling: a cadaveric study

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The purpose of this study is to compare the local microfracture effects of antegrade versus retrograde drilling of the tibial tunnel in ACL reconstruction. Arthroscopic ACL excision was performed on eight matched cadaveric knees. Arthroscopic guided tibial tunnel reaming was performed in either an antegrade (four) or retrograde (four) direction. A 3 × 3 cm section of proximal tibial surrounding the tibial aperture was removed with open dissection, and each section underwent micro-computed tomography analysis. Three musculoskeletal radiologists graded the specimens for bone aperture disruption and discrete fracture lines. Tibial aperture irregularity was seen in all four of the antegrade specimens (mean, Grade 1.5), and in none of the retrograde specimens. Discrete fracture lines were present in all four antegrade specimens (mean 10.13 mm depth; 8.95 mm length). No fracture lines were seen in the retrograde group. Retrograde drilling of the tibial tunnel in ACL reconstruction results in less microfracture trauma to the surrounding aperture bone. The use of retrograde drilling in ACL reconstruction may decrease synovialization of the graft-tissue interface when compared to antegrade drilling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aglietti P, Giron F, Buzzi R et al (2004) Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosis and gracilis tendon grafts. A prospective, randomized clinical trial. J Bone Joint Surg Am 86:2143–2155

    PubMed  Google Scholar 

  2. Barber FA, Spruill B, Sheluga M (2003) The effect of outlet fixation on tunnel widening. Arthrosc 19:485–492

    Google Scholar 

  3. Berg EE, Pollard ME, Kang Q (2001) Interarticular bone tunnel healing. Arthrosc 17:189–195

    CAS  Google Scholar 

  4. Freedman KB, D’Amato MJ, Nedeff DD et al (2003) Arthroscopic anterior cruciate ligament reconstruction: a meta-analysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 31:2–11

    PubMed  Google Scholar 

  5. Hoher J, Moller HD, Fu FH (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc 6:231–240

    Article  PubMed  CAS  Google Scholar 

  6. Ishibashi Y, Rudy TW, Livesay GA et al (1997) The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic system. Arthrosc 13:177–182

    CAS  Google Scholar 

  7. Lubowitz JH (2006) No tunnel anterior cruciate ligament reconstruction. Arthrosc 22:900e1–900e11

    Google Scholar 

  8. Morgan CD, Kalman VR, Grawl DM (1995) Definitive landmarks for reproducible tibial tunnel placement in anterior cruciate ligament reconstruction. Arthrosc 11:275–288

    CAS  Google Scholar 

  9. Morgan CD, Stein DA, Leitman EH, et al (2002) Anatomic tibial graft fixation using a retrograde bio-interference screw for endoscopic anterior cruciate ligament reconstruction. Arthrosc 18:38e1–38e8

    Google Scholar 

  10. Rodeo SA, Kawamura S, Kim H et al (2006) Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med 34:1790–1800

    Article  PubMed  Google Scholar 

  11. Weiler A, Hoffmann RFG, Bail HJ, et al (2002) Tendon healing in a bone tunnel. Part II: histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthrosc 18:124–135

    Google Scholar 

Download references

Acknowledgments

Research was supported by Arthrex, Naples, FL. The authors acknowledge Pacific Medical Inc., (Tracy, CA), for the donation of cadaveric specimens used in this study and use of the Arthrex (Naples, FL) retrodrill system.

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy R. McAdams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAdams, T.R., Biswal, S., Stevens, K.J. et al. Tibial aperture bone disruption after retrograde versus antegrade tibial tunnel drilling: a cadaveric study. Knee Surg Sports Traumatol Arthr 16, 818–822 (2008). https://doi.org/10.1007/s00167-008-0554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-008-0554-6

Keywords

Navigation