Skip to main content
Log in

Dynamic measurement of patellofemoral kinematics and contact pressure after lateral retinacular release: an in vitro study

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The purpose of this study was to investigate the influence of lateral retinacular release and medial and lateral retinacular deficiency on patellofemoral position and retropatellar contact pressure. Human knee specimens (n = 8, mean age = 65 SD 7 years, all male) were tested in a kinematic knee-simulating machine. During simulation of an isokinetic knee extension cycle from 120° to full extension, a hydraulic cylinder applied sufficient force to the quadriceps tendon to produce an extension moment of 31 Nm. The position of the patella was measured using an ultrasound based motion analysis system (CMS 100®, Zebris). The amount of patellofemoral contact pressure and its pressure distribution was measured using a pressure sensitive film (Tekscan®, Boston). Patellar position and contact pressure were first investigated in intact knee conditions, after a lateral retinacular release and a release of the medial and lateral retinaculum. After lateral retinacular release the patella continuously moved from a significant medialised position at flexion (P = 0.01) to a lateralised position (P = 0.02) at full knee extension compared to intact conditions, the centre of patellofemoral contact pressure was significantly medialised (0.04) between 120° and 60° knee flexion. Patellofemoral contact pressure did not change significantly. In the deficient knee conditions the patella moved on a significant lateralised track (P = 0.04) through the entire extension cycle with a lateralised centre of patellofemoral pressure (P = 0.04) with a trend (P = 0.08) towards increased patellofemoral pressure. The results suggest that lateral retinacular release did not inevitably stabilise or medialise patellar tracking through the entire knee extension cycle, but could decrease pressure on the lateral patellar facet in knee flexion. Therefore lateral retinacular release should be considered carefully in cases of patellar instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bentley G, Dowd G (1984) Current concepts of etiology and treatment of chondromalacia patellae. Clin Orthop Relat Res 189:209–228

    PubMed  Google Scholar 

  2. Christoforakis J, Bull AM, Strachan RK, Shymkiw R, Senavongse W, Amis AA (2006) Effects of lateral retinacular release on the lateral stability of the patella. Knee Surg Sports Traumatol Arthrosc 14(3):273–277

    Article  PubMed  CAS  Google Scholar 

  3. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2(1):19–26

    Article  PubMed  CAS  Google Scholar 

  4. Desio SM, Burks RT, Bachus KN (1998) Soft tissue restraints to lateral patellar translation in the human knee. Am J Sports Med 26(1):59–65

    PubMed  CAS  Google Scholar 

  5. Draganich LF, Andriacchi TP, Andersson GB (1987) Interaction between intrinsic knee mechanics and the knee extensor mechanism. J Orthop Res 5(4):539–547

    Article  PubMed  CAS  Google Scholar 

  6. Durselen L, Claes L, Kiefer H (1995) The influence of muscle forces and external loads on cruciate ligament strain. Am J Sports Med 23(1):129–136

    PubMed  CAS  Google Scholar 

  7. Eckhoff DG, Bach JM, Spitzer VM, Reinig KD, Bagur MM, Baldini TH, Rubinstein D, Humphries S (2003) Three-dimensional morphology and kinematics of the distal part of the femur viewed in virtual reality. Part II. J Bone Joint Surg Am 85-A(Suppl):497–104

    Google Scholar 

  8. Eckhoff DG, Dwyer TF, Bach JM, Spitzer VM, Reinig KD (2001) Three-dimensional morphology of the distal part of the femur viewed in virtual reality. J Bone Joint Surg Am 83-A(Suppl 2 Pt 1):43–50

    PubMed  Google Scholar 

  9. Elias JJ, Bratton DR, Weinstein DM, Cosgarea AJ (2006) Comparing two estimations of the quadriceps force distribution for use during patellofemoral simulation. J Biomech 39(5):865–872

    Article  PubMed  Google Scholar 

  10. Elias JJ, Cech JA, Weinstein DM, Cosgrea AJ (2004a) Reducing the lateral force acting on the patella does not consistently decrease patellofemoral pressures. Am J Sports Med 32(5):1202–1208

    Article  PubMed  Google Scholar 

  11. Elias JJ, Mattessich SM, Kumagai M, Mizuno Y, Cosgarea AJ, Chao EY (2004b) In vitro characterization of the relationship between the Q-angle and the lateral component of the quadriceps force. Proc Inst Mech Eng [H] 218(1):63–67

    CAS  Google Scholar 

  12. Farahmand F, Naghi TM, Amis A (2004) The contribution of the medial retinaculum and quadriceps muscles to patellar lateral stability—an in-vitro study. Knee 11(2):89–94

    Article  PubMed  Google Scholar 

  13. Fu FH, Maday MG (1992) Arthroscopic lateral release and the lateral patellar compression syndrome. Orthop Clin North Am 23(4):601–612

    PubMed  CAS  Google Scholar 

  14. Guettler JH, Demetropoulos CK, Yang KH, Jurist KA (2005) Dynamic evaluation of contact pressure and the effects of graft harvest with subsequent lateral release at osteochondral donor sites in the knee. Arthroscopy 21(6):715–720

    Article  PubMed  Google Scholar 

  15. Harris ML, Morberg P, Bruce WJM, Walsh WR (1999) An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J Biomech 32:951–958

    Article  PubMed  CAS  Google Scholar 

  16. Hawkins RJ, Bell RH, Anisette G (1986) Acute patellar dislocations. The natural history. Am J Sports Med 14(2):117–120

    PubMed  CAS  Google Scholar 

  17. Henry JE, Pflum FA Jr (1995) Arthroscopic proximal patella realignment and stabilization. Arthroscopy 11(4):424–425

    Article  PubMed  CAS  Google Scholar 

  18. Hughston JC, Deese M (1988) Medial subluxation of the patella as a complication of lateral retinacular release. Am J Sports Med 16(4):383–388

    PubMed  CAS  Google Scholar 

  19. Kolowich PA, Paulos LE, Rosenberg TD, Farnsworth S (1990) Lateral release of the patella: indications and contraindications. Am J Sports Med 18(4):359–365

    PubMed  CAS  Google Scholar 

  20. Krompinger WJ, Fulkerson JP (1983) Lateral retinacular release for intractable lateral retinacular pain. Clin Orthop Relat Res 179:191–193

    Article  PubMed  Google Scholar 

  21. Kruger T, Gobel F, Huschenbett A, Hein W (2002) Significance of lateral release in the therapy of patellar chondromalacia. Zentralbl Chir 127(10):900–904

    Article  PubMed  CAS  Google Scholar 

  22. Larson RL, Cabaud HE, Slocum DB, James SL, Keenan T, Hutchinson T (1978) The patellar compression syndrome: surgical treatment by lateral retinacular release. Clin Orthop Relat Res 134:158–167

    PubMed  Google Scholar 

  23. Malmstrom EM, Karlberg M, Melander A, Magnusson M (2003) Zebris versus Myrin: a comparative study between a three-dimensional ultrasound movement analysis and an inclinometer/compass method: intradevice reliability, concurrent validity, intertester comparison, intratester reliability, and intraindividual variability. Spine 28(21):E433–E440

    Article  PubMed  Google Scholar 

  24. Mau H (1980) Chondropathia patellae. Z Orthop Ihre Grenzgeb 118(2):208–218

    Article  PubMed  CAS  Google Scholar 

  25. Ostermeier S, Holst M, Bohnsack M, Hurschler C, Stukenborg-Colsman C, Wirth CJ (2006) Dynamic measurement of patellofemoral contact pressure following reconstruction of the medial patellofemoral ligament: an in-vitro study. Clin Biomech (Bristol, Avon). Cited 20 Nov 2006 [Epub ahead of print]

  26. Ostermeier S, Hurschler C, Stukenborg-Colsman C, Wirth CJ (2006) In vitro investigation of the effect of medial patellofemoral ligament reconstruction and medial tibial tuberosity transfer on lateral patellar stability. Arthroscopy 22(3):308–319

    Article  PubMed  Google Scholar 

  27. Panni AS, Tartarone M, Patricola A, Paxton EW, Fithian DC (2005) Long-term results of lateral retinacular release. Arthroscopy 21(5):526–531

    Article  PubMed  Google Scholar 

  28. Popko J, Wasilewski A, Mnich Z, Nawara J (1983) Syndrome of excessive external stress of the patella (lateral hyperpression syndrome of the patella). Beitr Orthop Traumatol 30(11):571–575

    PubMed  CAS  Google Scholar 

  29. Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG (2003) Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther 33(11):677–685

    PubMed  Google Scholar 

  30. Reilly DT, Martens M (1972) Experimental analysis of the quadriceps muscle force and patello-femoral joint reaction force for various activities. Acta Orthop Scand 43(2):126–137

    Article  PubMed  CAS  Google Scholar 

  31. Robinson M, Eckhoff DG, Reinig KD, Bagur MM, Bach JM (2006) Variability of landmark identification in total knee arthroplasty. Clin Orthop Relat Res 442:57–62

    Article  PubMed  Google Scholar 

  32. Sandmeier RH, Burks RT, Bachus KN, Billings A (2000) The effect of reconstruction of the medial patellofemoral ligament on patellar tracking. Am J Sports Med 28(3):345–349

    PubMed  CAS  Google Scholar 

  33. Schultz W, Buhmann HW, Leib S (1996) Differential indications for so-called “lateral release” in treatment of chondropathia patellae. Sportverletz Sportschaden 10(1):13–18

    Article  PubMed  CAS  Google Scholar 

  34. Senavongse W, Farahmand F, Jones J, Andersen H, Bull AM, Amis AA (2003) Quantitative measurement of patellofemoral joint stability: force–displacement behavior of the human patella in vitro. J Orthop Res 21(5):780–786

    Article  PubMed  CAS  Google Scholar 

  35. Shellock FG, Mink JH, Deutsch A, Fox JM, Ferkel RD (1990) Evaluation of patients with persistent symptoms after lateral retinacular release by kinematic magnetic resonance imaging of the patellofemoral joint. Arthroscopy 6(3):226–234

    Article  PubMed  CAS  Google Scholar 

  36. Stukenborg-Colsman C, Ostermeier S, Hurschler C, Wirth CJ (2002) Tibiofemoral contact stress after total knee arthroplasty: comparison of fixed and mobile-bearing inlay designs. Acta Orthop Scand 73(6):638–646

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Ostermeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostermeier, S., Holst, M., Hurschler, C. et al. Dynamic measurement of patellofemoral kinematics and contact pressure after lateral retinacular release: an in vitro study. Knee Surg Sports Traumatol Arthrosc 15, 547–554 (2007). https://doi.org/10.1007/s00167-006-0261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-006-0261-0

Keywords

Navigation