Skip to main content
Log in

Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The purpose of this study was to compare knee kinematics in patients with bi-cruciate preserving total knee arthroplasty and posterior cruciate ligament (PCL) preserving total knee arthroplasty. Five knees received PCL-retaining arthroplasty and nine knees received both cruciate-retaining arthroplasty (ACL/PCL knees). We studied treadmill gait, stair stepping, and maximum flexion activities using lateral fluoroscopy and shape matching. For maximum flexion, the ACL/PCL knees showed 6 mm more posterior translation of the lateral condyle (p < 0.05). For the stair activity, posterior translations of the lateral condyle were significantly greater in the ACL/PCL knees from 30° to 70° flexion (p < 0.05). Both condyles in the ACL/PCL knees showed greater posterior translation in the stance and swing phases of gait than in the PCL knees (p < 0.05). Preserving both cruciate ligaments in total knee arthroplasty appears to maintain some basic features of normal knee kinematics in these activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alkjaer T, Simonsen EB, Jørgensen U, Dyhre-Poulsen P (2003) Evaluation of the walking pattern in two types of patients with anterior cruciate ligament deficiency: copers and non-copers. Eur J Appl Physiol 89:301–308

    PubMed  Google Scholar 

  2. Alkjaer T, Simonsen EB, Magnusson SP, Aagaard H, Dyhre-Poulsen P (2002) Differences in the movement pattern of a forward lunge in two types of anterior cruciate ligament deficient patients: copers and non-copers. Clin Biomech 17:586–593

    Article  Google Scholar 

  3. Andriacchi TP, Dyrby CO (2005) Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech 38:293–298

    Article  PubMed  Google Scholar 

  4. Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee replacement design on walking and stair climbing. J Bone Joint Surg Am 64A:1328–1335

    Google Scholar 

  5. Banks SA, Fregly BJ, Boniforti F, Reinschmidt C (2005) Comparing in vivo kinematics of unicondylar and bi-unicondylar knee replacements. Knee Surg Sports Traumatol Arthrosc 13:193–196

    Article  PubMed  Google Scholar 

  6. Banks SA, Harman MK, Hodge WA (2002) Mechanism of anterior impingement damage in total knee arthroplasty. J Bone Joint Surg Am 84A:37–42

    Google Scholar 

  7. Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43:638–649

    Article  PubMed  CAS  Google Scholar 

  8. Banks SA, Hodge WA (2004) Design and activity dependence of kinematics in fixed and mobile bearing knee arthroplasties. J Arthroplasty 19:809–816

    Article  PubMed  Google Scholar 

  9. Banks SA, Hodge WA (2004) Implant design affects knee arthroplasty kinematics during stair-stepping. Clin Orthop 426:187–193

    Article  PubMed  Google Scholar 

  10. Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate retaining and substituting knee replacements. J Arthroplasty 12:297–304

    Article  PubMed  CAS  Google Scholar 

  11. Berchuck M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72A:871–877

    Google Scholar 

  12. Canny JA (1986) Computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698

    Article  Google Scholar 

  13. Cloutier JM, Sabouret P, Deghrar A (1999) Total knee arthroplasty with retention of both cruciate ligaments: a nine to eleven-year follow-up study. J Bone Joint Surg Am 81A:697–702

    Google Scholar 

  14. Dennis DA, Komistek RD, Mahfouz MR, Hass DB, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop 416:37–57

    Article  PubMed  Google Scholar 

  15. Dennis DA, Mahfouz MR, Komistek RD, Hoff W (2005) In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 38:241–253

    Article  PubMed  Google Scholar 

  16. Goodfellow J, O’Connor J (1992) The anterior cruciate ligament in knee arthroplasty: a risk-factor with unconstrained meniscal prostheses. Clin Orthop 276:245–252

    PubMed  Google Scholar 

  17. Harman MK, Banks SA, Hodge WA (2001) Polyethylene damage and knee kinematics after total knee arthroplasty. Clin Orthop 392:383–393

    Article  PubMed  Google Scholar 

  18. Hass BD, Komistek RD, Dennis DA (2002) In vivo kinematics of the low contact stress rotating platform total knee. Orthopedics 25:s219–s226

    Google Scholar 

  19. Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MAR (2000) Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br 82B:1196–1198

    Article  Google Scholar 

  20. Insall JN (1988) Presidential address to the knee society: choices and compromises in total knee arthroplasty. Clin Orthop 226:43–48

    PubMed  Google Scholar 

  21. Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the knee society clinical rating system. Clin Orthop 248:13–14

    PubMed  Google Scholar 

  22. Iwaki H, Pinskerova V, Freeman MAR (2000) Tibio-femoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 82B:1189–1195

    Article  Google Scholar 

  23. Jenny JY, Jenny G (1998) Preservation of anterior cruciate ligament in total knee arthroplasty. Arch Orthop Trauma Surg 118:145–148

    Article  PubMed  CAS  Google Scholar 

  24. Kanekasu K, Banks SA, Honjo S, Nakata O, Hiromi K (2004) Fluoroscopic analysis of knee arthroplasty kinematics during deep flexion kneeling. J Arthroplasty 19:998–1003

    Article  PubMed  Google Scholar 

  25. Kärrholm J, Selvik G, Elmqvist LG, Hansson LI (1988) Active knee motion after cruciate ligament rupture. Acta Orthop Scand 59:158–164

    PubMed  Google Scholar 

  26. Kim YH (1990) Knee arthroplasty using a cementless PCA prosthesis with a porous coated central tibial stem. J Bone Joint Surg Br 72B:412

    Google Scholar 

  27. Komistek RD, Allain J, Anderson DT, Dennis DA, Goutallier D (2002) In vivo kinematics for subjects with and without an anterior cruciate ligament. Clin Orthop 404:315–325

    Article  PubMed  Google Scholar 

  28. Misra AN, Hussain RA, Fiddian NJ, Newton G (2003) The role of the posterior cruciate ligament in total knee replacement. J Bone Joint Surg Br 85B:389–392

    Article  Google Scholar 

  29. Myles CM, Rowe PJ, Walker CRC, Nutton RW (2002) Knee joint functional range of movement prior to and following total knee arthroplasty measured using flexible electrogoniometry. Gait Posture 16:46–54

    Article  PubMed  Google Scholar 

  30. Nabeyama R, Matsuda S, Miura H, Kawano T, Nagamine R, Mawatari T, Tanaka K, Iwamoto Y (2003) Changes in antero-posterior stability following total knee arthroplasty. J Orthop Sci 8:526–531

    Article  PubMed  Google Scholar 

  31. Nozaki H, Banks SA, Suguro T, Hodge WA (2002) Observations of femoral rollback in cruciate-retaining knee arthroplasty. Clin Orthop 404:308–314

    Article  PubMed  Google Scholar 

  32. Pritchett JW (1996) Anterior cruciate-retaining total knee arthroplasty. J Arthroplasty 11:194–197

    Article  PubMed  CAS  Google Scholar 

  33. Pritchett JW (2004) Patient preferences in knee prostheses. J Bone Joint Surg Br 86B:979–982

    Article  Google Scholar 

  34. Scott RD, Volatile TB (1986) Twelve years experience with posterior cruciate-retaining total knee arthroplasty. Clin Orthop 205:100–107

    PubMed  Google Scholar 

  35. Shelburne KB, Pandy MG, Torry MR (2004) Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. J Biomech 37:313–319

    Article  PubMed  Google Scholar 

  36. Stiehl JB, Komistek RD, Cloutier JM, Dennis DA (2000) The cruciate ligaments in total knee arthroplasty: a kinematic analysis of 2 total knee arthroplasties. J Arthroplasty 15:545–550

    Article  PubMed  CAS  Google Scholar 

  37. Suggs JF, Li G, Park SE, Steffensmeier S, Rubash HE, Freiberg AA (2004) Function of the anterior cruciate ligament after unicompartmental knee arthroplasty: an in vitro robotic study. J Arthroplasty 19:224–229

    Article  PubMed  Google Scholar 

  38. Tupling S, Pierrynowski M (1987) Use of Cardan angles to locate rigid bodies in three-dimensional space. Med Biol Eng Comput 25:527–532

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Banks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moro-oka, Ta., Muenchinger, M., Canciani, JP. et al. Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthr 15, 93–99 (2007). https://doi.org/10.1007/s00167-006-0134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-006-0134-6

Keywords

Navigation