Skip to main content
Log in

Is the increase in type III collagen of the patellar tendon graft after ligament reconstruction really caused by “ligamentization” of the graft?

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

To test the hypothesis that extrinsic cells that infiltrate the devitalized patellar tendon (PT) synthesize type III collagen even in the environmental milieu of the native PT, we conducted the present experimental study using the rat in situ frozen–thawed PTs. Tissue culture showed no cell outgrowth from the tendons immediately after the freeze–thaw treatment. Analysis by RT-PCR showed that the expression level of type III procollagen mRNA in the frozen–thawed tendon was significantly higher than that in the sham-operated tendon at 6 and 12 weeks. Immunohistological findings showed positive type III collagen staining around cells that had infiltrated the necrotized tendon at 3, 6, and 12 weeks. In addition, the elastic modulus of the in situ frozen–thawed tendon at 6 weeks was significantly less than that of the sham-operated tendon. The present study indicates that extrinsic cells that had infiltrated the devitalized PT synthesized type III collagen at least for 12 weeks even in the environmental milieu of the native PT. These findings raised the question whether the increase in type III collagen of the PT graft after ACL reconstruction is really caused by “ligamentization,” the adaptation of the PT graft to the ACL environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K (1993) Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy 9(4):394–405

    Article  PubMed  CAS  Google Scholar 

  2. Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4(2):162–172

    Article  PubMed  CAS  Google Scholar 

  3. Arnoczky SP, Tarvin GB, Marshall JL (1982) Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am 64(2):217–224

    PubMed  CAS  Google Scholar 

  4. Bosch U, Decker B, Moller HD, Kasperczyk WJ, Oestern HJ (1995) Collagen fibril organization in the patellar tendon autograft after posterior cruciate ligament reconstruction. A quantitative evaluation in a sheep model. Am J Sports Med 23(2):196–202

    PubMed  CAS  Google Scholar 

  5. Bush-Joseph CA, Cummings JF, Buseck M, Bylski-Austrow DI, Butler DL, Noyes FR, Grood ES (1996) Effect of tibial attachment location on the healing of the anterior cruciate ligament freeze model. J Orthop Res 14(4):534–541

    Article  PubMed  CAS  Google Scholar 

  6. Fleischmajer R, Gay S, Perlish JS, Cesarini JP (1980) Immunoelectron microscopy of type III collagen in normal and scleroderma skin. J Invest Dermatol 75(2):189–191

    Article  PubMed  CAS  Google Scholar 

  7. Graf BK, Fujisaki K, Vanderby R Jr, Vailas AC (1992) The effect of in situ freezing on rabbit patellar tendon. A histologic, biochemical, and biomechanical analysis. Am J Sports Med 20(4):401–405

    PubMed  CAS  Google Scholar 

  8. Hara N, Yasuda K, Kimura S, Majima T, Minami A, Tohyama H (2003) Effects of stress deprivation on mechanical properties of the in situ frozen–thawed semitendinosus tendon in rabbits. Clin Biomech 18(1):60–68

    Article  Google Scholar 

  9. Jackson DW, Grood ES, Cohn BT, Arnoczky SP, Simon TM, Cummings JF (1991) The effects of in situ freezing on the anterior cruciate ligament. An experimental study in goats. J Bone Joint Surg Am 73(2):201–213

    PubMed  CAS  Google Scholar 

  10. Katsuragi R, Yasuda K, Tsujino J, Keira M, Kaneda K (2000) The effect of nonphysiologically high initial tension on the mechanical properties of in situ frozen anterior cruciate ligament in a canine model. Am J Sports Med 28(1):47–56

    PubMed  CAS  Google Scholar 

  11. Kleiner JB, Amiel D, Roux RD, Akeson WH 1986) Origin of replacement cells for the anterior cruciate ligament autograft. J Orthop Res 4(4):466–474

    Article  PubMed  CAS  Google Scholar 

  12. Moeller HD, Bosch U, Decker B (1995) Collagen fibril diameter distribution in patellar tendon autografts after posterior cruciate ligament reconstruction in sheep: changes over time. J Anat 187(Pt 1):161–167

    PubMed  Google Scholar 

  13. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66(3):344–352

    PubMed  CAS  Google Scholar 

  14. Oakes BW (1993) Collagen ultrastructure in the normal ACL and in ACL graft. In: Jackson DW (ed) The anterior cruciate ligament. Current and future concepts. Raven Press, New York, pp 209–217

    Google Scholar 

  15. Ohno K, Yasuda K, Yamamoto N, Kaneda K, Hayashi K (1993) Effects of complete stress-shielding on the mechanical properties and histology of in situ frozen patellar tendon. J Orthop Res 11(4):592–602

    Article  PubMed  CAS  Google Scholar 

  16. Ohno K, Yasuda K, Yamamoto N, Kaneda K, Hayashi K (1996) Biomechanical and histological changes in the patellar tendon after in situ freezing. An experimental study in rabbits. Clin Biomech 11(4):207–213

    Article  Google Scholar 

  17. Sakai H, Koibuchi N, Ohtake H, Tamai K, Fukui N, Oda H, Saotome K (2001) Type I and type III procollagen gene expressions in the early phase of ligament healing in rabbits: an in situ hybridization study. J Orthop Res 19(1):132–135

    Article  PubMed  CAS  Google Scholar 

  18. Shino K, Oakes BW, Horibe S, Nakata K, Nakamura N (1995) Collagen fibril populations in human anterior cruciate ligament allografts. Electron microscopic analysis. Am J Sports Med 23(2):203–208

    PubMed  CAS  Google Scholar 

  19. Sluss JR, Liberti JP, Jiranek WA, Wayne JS, Zuelzer WA (2001) pN collagen type III within tendon grafts used for anterior cruciate ligament reconstruction. J Orthop Res 19(5):852–857

    Article  PubMed  CAS  Google Scholar 

  20. Tohyama H, Yasuda K (2000) Extrinsic cell infiltration and revascularization accelerate mechanical deterioration of the patellar tendon after fibroblast necrosis. J Biomech Eng 122(6):594–599

    Article  PubMed  CAS  Google Scholar 

  21. Tsuchida T, Yasuda K, Kaneda K, Hayashi K, Yamamoto N, Miyakawa K, Tanaka K (1997) Effects of in situ freezing and stress-shielding on the ultrastructure of rabbit patellar tendons. J Orthop Res 15(6):904–910

    Article  PubMed  CAS  Google Scholar 

  22. Uchida H, Tohyama H, Nagashima K, Ohba Y, Matsumoto H, Toyama Y, Yasuda K (2005) Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon. J Biomech 38(4):791–798

    Article  PubMed  Google Scholar 

  23. Williams IF, Heaton A, McCullagh KG (1980) Cell morphology and collagen types in equine tendon scar. Res Vet Sci 28(3):302–310

    PubMed  CAS  Google Scholar 

  24. Williams IF, McCullagh KG, Silver IA (1984) The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res 12(3–4):211–227

    PubMed  CAS  Google Scholar 

  25. Woo SL, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19(5):399–404

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto N, Hayashi K, Kuriyama H, Ohno K, Yasuda K, Kaneda K (1992) Mechanical properties of the rabbit patellar tendon. J Biomech Eng 114(3):332–337

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harukazu Tohyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohyama, H., Yasuda, K. & Uchida, H. Is the increase in type III collagen of the patellar tendon graft after ligament reconstruction really caused by “ligamentization” of the graft?. Knee Surg Sports Traumatol Arthrosc 14, 1270–1277 (2006). https://doi.org/10.1007/s00167-006-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-006-0092-z

Keywords

Navigation