Skip to main content
Log in

Bone mineral density of the proximal metaphysis of tibia: clinical relevance in posterior cruciate ligament reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The objective of this study was to evaluate the bone mineral density (BMD) of the proximal tibia in the area adjacent to the fixation of the posterior cruciate ligament (PCL) and compare with the BMD in a similar area at the ideal site for anterior cruciate ligament fixation. Twenty healthy male subjects, undertaking similar daily physical activity were enrolled for this study. The mean age of the subjects was 22 years (range 20–24 years). The bone mineral density (BMD) at the proximal tibia was calculated using a quantitative CT scan of the dominant knee, and the data were recorded in Hounsfield units (HU). Two circular regions of interest, anterior and posterior, of identical diameters (10 mm) and thicknesses (5 mm) were studied. The results showed a significantly higher BMD in the anterior region (162.4±33.8 HU) than in the posterior one (104±24.6 HU) with a statistically significant difference (p=0.0001). The clinical implication of this finding is that the fixation should provide a firm construct for PCL reconstructions and be specifically designed for working in low bone quality areas such as the posterior proximal tibia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brand JC, Pienkowski D, Steenlage E, Hamilton D, Johnson D, Caborn DNM (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705–710

    Google Scholar 

  2. Brown GA, Peňa F, Gróntvedt T, Labadie D, Engebretsen L (1996) Fixation strength of interference screw fixation in bovine, young human and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surg Sports Traumatol Arthrosc 3:238–244

    Google Scholar 

  3. Butler JC, Branch TP, Hutton WC (1994) Optimal graft fixation-the effect of gap size and screw size on bone plug fixation in ACL reconstruction. Arthroscopy 10:524–529

    Google Scholar 

  4. Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computer tomography. J Comput Assist Tomogr 4:493–500

    Google Scholar 

  5. Christensen P, Kiaer J, Melsen F, Nielsen HE, Sneppen O (1982) The subchondral bone of the proximal tibial epiphysis in osteoarthritis of the knee. Acta Orthop Scand 53:889–895

    Google Scholar 

  6. Ding M, Odgaard A, Linde F, Hvid I (2002) Age-related variations in the microstructure of human tibial cancellous bone. J Orthop Res 20:615–621

    Article  PubMed  Google Scholar 

  7. Eysel P, Schwitalle M, Oberstein A, Rompe J, Hopf C, Kullmer K (1998) Preoperative estimation of screw fixation strength in vertebral bodies. Spine 23:174–180

    Article  Google Scholar 

  8. Fu FH, Bennett CH, Ma CB, Menetrey J, Lattermann C (2000) Current trends in anterior cruciate ligament reconstruction. Part II. Operative procedures and clinical correlations. Am J Sports Med 28:124–130

    CAS  PubMed  Google Scholar 

  9. Greis PE, Burks RT, Bachus K, Luker MG (2001) The influence of tendon length and fit on the strength of a tendon-bone tunnel complex. A biomechanical and histologic study in the dog. Am J Sports Med 29:493–497

    Google Scholar 

  10. Höher J, Scheffler S, Weiler A (2003) Graft choice and graft fixation in PCL reconstruction. Knee Surg Sports Traumatol Arthrosc 11:297–306

    Google Scholar 

  11. Hopper K, Wang MP, Kunselman AR (2000) The use of clinical CT for baseline bone density assessment. J Comp Assist Tomogr 24:896–899

    Article  Google Scholar 

  12. Johnson L, van Dijk N (1996) Metal and bioabsorbable interference screws: comparison of failure strength. Arthroscopy 13:177–182

    Google Scholar 

  13. Johnson LL (1998) Bone compaction techniques in knee ligament reconstruction. Techn Orthop 13:341–352

    Google Scholar 

  14. Kohn D, Rose C (1994) Primary stability of interference screw fixation. Am J Sports Med 22:334–338

    Google Scholar 

  15. Madsen OR, Scaadt O, Biddal H (1994) Bone mineral distribution of the proximal tibia in gonarthrosis assessed in vivo by photon absorption. Osteoarthritis Cartilage 2:141–147

    Google Scholar 

  16. Marti C, Imhoff AB, Bahrs C, Romero J (1997) Metal versus bioabsorbable interference screw for fixation of bone-patellar tendon-bone autograft in arthroscopic anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 5:217–221

    Article  Google Scholar 

  17. Margheritini F, Rihn JA, Mauro CS, Stabile KJ, Woo SL-Y, Harner CD (2004) The effect of tibial fixation location on the biomechanics of posterior cruciate ligament reconstructed knee. Arthroscopy (in press)

  18. Markolf KL, Slauterbeck JR, Armstrong KL, Shapiro MS, Finermann GAM (1997) A biomechanical study of replacement of the posterior cruciate ligament with a graft. Part I. Isometry, pre-tension of the graft, and anterior posterior laxity. J Bone Joint Surg Am 79:375–379

    Google Scholar 

  19. Matthews LS, Parks BG, Sabbagh RC (1988) Determination of fixation strength of large-diameter interference screw. Arthroscopy 14:70–74

    Google Scholar 

  20. Morrison JB (1969) Function of knee joint and various activities. Biomed Eng 5:573–580

    Google Scholar 

  21. Nurmi JT, Järvinen TLN, Kannus P, Sievänen H, Toukosalo J, Järvinen M (2002) Compaction versus extraction drilling for fixation of the hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med 30:67–173

    Google Scholar 

  22. Nurmi JT, Kannus P, Sievänen H, Järvinen M, Järvinen TLN (2003) Compaction drilling does not increase the initial fixation strength of the hamstring tendon graft in anterior cruciate ligament reconstruction in a cadaver model. Am J Sports Med 31:353–358

    Google Scholar 

  23. Nurmi JT, Kannus P, Sievänen H, Järvelä T, Järvinen M, Järvinen TLN (2004) Interference screw fixation of soft tissue grafts in anterior cruciate ligament reconstruction. Part 1. Effect of tunnel compaction by serial dilators versus extraction drilling on the initial fixation strength. Am J Sports Med 32:411–417

    Article  Google Scholar 

  24. Peňa F, Gróntvedt T, Brown GA, Aune A, Engebretsen L (1996) Comparison of failure strength between metallic and absorbable interference screws. Am J Sports Med 24:329–334

    CAS  PubMed  Google Scholar 

  25. Pomeroy G, Baltz M, Pierz K, Nowak M, Post W, Fulkerson JP (1998) The effects of bone plug length and screw diameter on the holding strength of bone-tendon-bone grafts. Arthroscopy 14:148–152

    Google Scholar 

  26. Rittmeister M, Noble P, Bocell JR Jr, Alexander JW, Conditt MA, Kohl HW III (2001) Interactive effects of tunnel dilation on the mechanical properties of hamstring grafts fixed in the tibia with interference screws. Knee Surg Sports Traumatol Arthrosc 9:267–271

    Article  Google Scholar 

  27. Shapiro JD, Jackson DW, Aberman HM, Lee TQ, Simon TM (1995) Comparison of pullout strength for seven and nine millimeter diameter interference screw size as used in ACL reconstruction. Arthroscopy 11:596–599

    Google Scholar 

  28. Sievänen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I (1998) Peripheral quantitative computer tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 13:871–882

    CAS  PubMed  Google Scholar 

  29. Singhatat W, Lawhorn KW, Howell SM, Hull ML (2002) How four weeks of implantation affect the strength and stiffness of a tendon graft in bone tunnel. Am J Sports Med 30:506–513

    Google Scholar 

  30. Snyder BD, Zaltz I, Hall JE, Emans JB (1995) Predicting the integrity of vertebral bone screw fixation in anterior spinal instrumentation. Spine 20:1568–1574

    Google Scholar 

  31. Steenlage E, Brand JC Jr, Johnson DL, Caborn DNM (2002) Correlation of bone tunnel diameter with quadrupled hamstring graft fixation strength using a biodegradable interference screw. Arthroscopy 18:901–907

    Google Scholar 

  32. Tsuji T, Kitano K, Yamano Y, Sato T, Koike T (2001) Distribution of bone mineral density in the proximal tibia in mid-teens. J Bone Miner Metab 19:324–328

    Article  Google Scholar 

  33. Wang CJ, Chen HH, Chen HS, Huang T (2002) Effects of knee position, graft tension, and mode of fixation in posterior cruciate ligament reconstruction: a cadaveric knee study. Arthroscopy 18:496–501

    PubMed  Google Scholar 

  34. Weiler A, Hoffmann RFG, Stähelin AC, Bail HJ, Siepe CJ, Südkamp NP (1998) Hamstring tendon fixation using interference screws: a biomechanical study in calf tibial bone. Arthroscopy 14:29–37

    Google Scholar 

  35. Wittenberg RH, Shea M, Swartz DE, Lee KS, White AA III, Hayes WC (1991) Importance of bone mineral density in instrumented spine fusions. Spine 16:647–652

    CAS  PubMed  Google Scholar 

  36. Zheng Y, Lu W, Zhu Q, Qin L, Zhong S, Leong J (2000) Variation in bone mineral density of the sacrum in young adults and its significance for sacral fixation. Spine 25:353–357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Mariani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariani, P.P., Margheritini, F. & Bellelli, A. Bone mineral density of the proximal metaphysis of tibia: clinical relevance in posterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 13, 263–267 (2005). https://doi.org/10.1007/s00167-004-0564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-004-0564-y

Keywords

Navigation