Skip to main content
Log in

Tibial fixation comparison of semitendinosus-bone composite allografts fixed with bioabsorbable screws and bone-patella tendon-bone grafts fixed with titanium screws

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Tibial fixation remains the weak link of ACL reconstruction over the first 8–12 weeks postoperatively. This study compared the biomechanical properties of tibial fixation for a bone-patellar tendon-bone (BPTB) graft and a novel semitendinosus-bone composite (SBC) allograft with mixed cortical-cancellous bone dowels at each end. Seven paired, fresh frozen cadaveric knees (20–45 years) were stripped of all soft tissue attachments and randomly assigned to receive either the BPTB graft or SBC allograft. Grafts were placed into tibial tunnels via a standard protocol and secured with either a 10 mm×28 mm bioabsorbable (SBC) or titanium (BPTB) screw. Grafts were cycled ten times in a servo hydraulic device from 10–50 N prior to pull to failure testing at a rate of 20 mm/min with the force vector aligned with the tibial tunnel ("worst case scenario"). Wilcoxon Signed Rank Tests were used to evaluate biomechanical differences between graft types (p<0.05). Tibial bone mineral density and interference screw insertion torque were statistically equivalent between graft types. The mode of failure for all constructs was direct screw and graft construct pullout from the tibial tunnel. Significant differences were not observed between graft types for maximum load at failure strength (BPTB=620.8±209 N vs. SBC=601.2±140 N, p=0.74) or stiffness (BPTB=69.8 N/mm±29 N/mm vs SBC=47.1±31.6 N/mm, p=0.24). The SBC allograft yielded significantly more displacement prior to failure than the BPTB graft (15.1±4.9 mm vs 9.2±1.3 mm, p=0.04). Increased construct displacement appeared to be due to fixation failure, with some evidence of graft tissue tearing around the sutures: Bioabsorbable screw (10×28 mm) fixation of the SBC allograft produced unacceptable displacement levels during testing. Further study is recommended using a titanium interference screw or a longer bioabsorbable screw for SBC graft fixation under cyclic loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Barrett GR, Noojin FK, Hartzog CW, Nash CR (2002) Reconstruction of the anterior cruciate ligament in females: A comparison of hamstring versus patellar tendon autograft. Arthroscopy 18:46–54

    Article  PubMed  Google Scholar 

  2. Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC (1994) The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. Am J Sports Med 22:328–333

    CAS  PubMed  Google Scholar 

  3. Bonatus TJ, Alexander AH (1991) Patellar fracture and avulsion of the patellar ligament complicating arthroscopic anterior cruciate ligament reconstruction. Orthop Rev 20:770–774

    Google Scholar 

  4. Brand JC Jr, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705–710

    PubMed  Google Scholar 

  5. Charlick DA. Caborn DN (2000) Technical note: alternative soft-tissue graft preparation technique for cruciate ligament reconstruction. Arthroscopy 16:E20

    CAS  PubMed  Google Scholar 

  6. DuMontier TA, Metcalf MH, Simonian PT, Larson RV (2001) Patella fracture after anterior cruciate ligament reconstruction with the patellar tendon: A comparison between different shaped bone block excisions. Am J Knee Surg 14:9–15

    CAS  PubMed  Google Scholar 

  7. Hamner DL, Brown CH Jr., Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: Biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg 81A:549–557

    Google Scholar 

  8. Haut Donahue TL, Howell SM, Hull ML, Gregersen C (2002) A biomechanical evaluation of anterior and posterior tibialis tendons as suitable single-loop anterior cruciate ligament grafts. Arthroscopy 18:589–597

    PubMed  Google Scholar 

  9. Howell SM, Wallace MP, Hull ML, Deutsch ML (1999) Evaluation of the single-incision arthroscopic technique for anterior cruciate ligament replacement. A study of tibial tunnel placement, intraoperative graft tension, and stability. Am J Sports Med. 27:284–293

    Google Scholar 

  10. Kartus J, Movin T, Karlsson J (2001) Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy 17:971–980

    Article  CAS  PubMed  Google Scholar 

  11. Liu HS, Kabo MJ, Osti L (1995) Biomechanics of two types of bone tendon-bone graft for ACL reconstruction. J Bone Joint Surg 77B:232–235

    Google Scholar 

  12. Miller MD, Nichols T, Butler CA (1999) Patella fracture and proximal tendon rupture following arthroscopic anterior cruciate ligament reconstruction. Arthroscopy 15:640–643

    CAS  PubMed  Google Scholar 

  13. Moebius UG, Georgoulis AD, Papageorgiou CD, Papadonikolakis A, Rossis J, Soucacos PN (2001) Alterations of the extensor apparatus after anterior cruciate ligament reconstruction using the medial third of the patellar tendon. Arthroscopy 17:953–959

    Article  CAS  PubMed  Google Scholar 

  14. Morgan CD, Kalman VR, Grawl DM (1995) Isometry testing for anterior cruciate ligament reconstruction. Arthroscopy 11:647–659

    CAS  PubMed  Google Scholar 

  15. Morrison JB (1969) Function of the knee joint in various activities. Biomed Eng 4:573–580

    CAS  PubMed  Google Scholar 

  16. Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3:51–61

    CAS  PubMed  Google Scholar 

  17. Nakamura N, Horibe S, Sasaki S et al (2002) Evaluation of active knee flexion and hamstring strength after anterior cruciate ligament reconstruction using hamstring tendons. Arthroscopy 18:598–602

    PubMed  Google Scholar 

  18. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg 66A:344–352

    Google Scholar 

  19. Noyes FR, Butler DL, Paulos LE, Grood ES (1983) Intra-articular cruciate reconstruction. I: perspectives on graft strength, vascularization, and immediate motion after replacement. Clin Orthop 172:71–77

    PubMed  Google Scholar 

  20. Nyland J (1999) Rehabilitation complications following knee surgery. Clin Sports Med 18:905–925

    CAS  PubMed  Google Scholar 

  21. Odensten M, Gillquist J (1985) Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. J Bone Joint Surg 67A:257–262

    Google Scholar 

  22. Petsche TS, Hutchinson MR (1999) Loss of extension after reconstruction of the anterior cruciate ligament. J Am Acad Orthop Surg 7:119–127

    CAS  PubMed  Google Scholar 

  23. Pinczewski LA, Clingeleffer AJ, Otto DD, Bonar SF, Corry IS (1997) Integration of hamstring tendon graft with bone in reconstruction of the anterior cruciate ligament. Arthroscopy 13:641–643

    CAS  PubMed  Google Scholar 

  24. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendon-healing in a bone tunnel: a biomechanical and histological study in the dog. J Bone Joint Surg 75A:1795–1803

    Google Scholar 

  25. Scheffler SU, Norbert CM, Sudkamp NP, Gockenjan A, Hoffmann RFG, Weiler A (2002) Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: the impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304–315

    Article  PubMed  Google Scholar 

  26. Selby JB, Johnson DL, Hester P, Caborn DN (2001) Effect of screw length on bioabsorbable interference screw in a tibial bone tunnel. Am J Sports Med 29:614–619

    CAS  PubMed  Google Scholar 

  27. Shino K, Inoue M, Horibe S, Hamada M, Ono K (1990) Reconstruction of the anterior cruciate ligament using allogeneic tendon: long term followup. Am J Sports Med 18:457–465

    CAS  PubMed  Google Scholar 

  28. Shino K, Nakagawa S, Inoue M, Horibe S, Yoneda M (1993) Deterioration of patello-femoral articular surfaces after anterior cruciate ligament reconstruction. Am J Sports Med 21:206–211

    CAS  PubMed  Google Scholar 

  29. Takeuchi R, Saito T, Mituhashi S, Suzuki E, Yamada I, Koshino T (2002) Double-bundle anatomic anterior cruciate ligament reconstruction using bone-hamstring bone composite graft. Arthroscopy 18:550–555

    Article  PubMed  Google Scholar 

  30. Yasuda K, Tsujino J, Ohkoshi Y, Tanabe Y, Kaneda K (1995) Graft site morbidity with autogenous semitendinosus and gracilis tendons. Am J Sports Med 23:706–714

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nyland.

Additional information

Arthrex Inc., Naples, FL, USA sponsored this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocabey, Y., Klein, S., Nyland, J. et al. Tibial fixation comparison of semitendinosus-bone composite allografts fixed with bioabsorbable screws and bone-patella tendon-bone grafts fixed with titanium screws. Knee Surg Sports Traumatol Arthrosc 12, 88–93 (2004). https://doi.org/10.1007/s00167-003-0370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-003-0370-y

Keywords

Navigation