Skip to main content
Log in

A review of mass customization across marketing, engineering and distribution domains toward development of a process framework

  • Original Paper
  • Published:
Research in Engineering Design Aims and scope Submit manuscript

Abstract

Introduced nearly 25 years ago, the paradigm of mass customization (MC) has largely not lived up to its promise. Despite great strides in information technology, engineering design practice and manufacturing production, the necessary process innovations that can produce products and systems with sufficient customization and economic efficiency have yet to be found in wide application. In this paper, the state-of-the-art in MC is explored in the context of an envisioned MC development process for both the firm and the customer. Specifically, 130 references are reviewed within the process frameworks (Sect. 3) and/or to highlight opportunities for future development in MC (Sect. 4) based on the review. This review yields opportunities in four primary areas that challenge MC development: (1) customer needs and preference assessment tools, (2) approaches for requirement specification and conceptual design, (3) insights from methodologies focused on the development of durable MC goods and (4) enhancements in information mapping and handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alford D, Sackett P, Nelder G (2000) Mass customization—An automotive perspective. Int J Prod Econ 65(1):99–110

    Google Scholar 

  • Arnheiter ED, Harren H (2005) A typology to unleash the potential of modularity. J Manuf Technol Manage 16(7):699–711. doi:10.1108/17410380510619923

    Google Scholar 

  • Arora N, Henderson T, Liu Q (2011) Noncompensatory dyadic choices. Mark Sci 30(6):1028–1047

    Google Scholar 

  • Augustine M, Yadav OP, Jain R, Rathore APS (2010) Concept convergence process: a framework for improving product concepts. Comput Ind Eng 59(3):367–377

    Google Scholar 

  • Bardakci A, Whitelock J (2003) Mass-customisation in marketing: the consumer perspective. J Consum Mark 20(5):463–479. doi:10.1108/07363760310489689

    Google Scholar 

  • Barnett L, Rahimifard S, Newman S (2004) Distributed scheduling to support mass customization in the shoe industry. Int J Comput Integr Manuf 17(7):623–632

    Google Scholar 

  • Bateman R, Cheng K (2002) Devolved manufacturing. Concurr Eng 10(4):291–298

    Google Scholar 

  • Baxter D, Gao J, Case K, Harding J, Young B, Cochrane S, Dani S (2008) A framework to integrate design knowledge reuse and requirements management in engineering design. Robot Comput Integr Manuf 24(4):585–593

    Google Scholar 

  • Bernard Y (2012) Requirements management within a full model-based engineering approach. Syst Eng 15(2):119–139

    Google Scholar 

  • Bi ZM, Gruver WA, Lang SYT (2004) Analysis and synthesis of reconfigurable robotic systems. Concurr Eng 112(2):145–154

    Google Scholar 

  • Bruce M, Lucy D, Kenneth B (2007) Delineating design factors that influence the global product launch process. J Prod Innov Manage 24(5):456–470

    Google Scholar 

  • Brun A, Zorzini M (2009) Evaluation of product customization strategies through modularization and postponement. Int J Prod Econ 120(1):205–220

    Google Scholar 

  • Carulli M, Bordegoni M, Cugini U (2012) An approach for capturing the voice of the customer based on virtual prototyping. J Intell Manuf. doi:10.1007/s10845-012-0662-5

    Google Scholar 

  • Chen R, Tu M (2009) Development of an agent-based system for manufacturing control and coordination with ontology and RFID technology. Expert Syst Appl 35(4):7581–7593

    MathSciNet  Google Scholar 

  • Chen Z, Wang L (2010) Personalized product configuration rules with dual formulations: a method to proactively leverage mass confusion. Expert Syst Appl 37(1):383–392. doi:10.1016/j.eswa.2009.05.050

    Google Scholar 

  • Chen C-H, Khoo L, Yan W (2003) Evaluation of multicultural factors from elicited customer requirements for new product development. Res Eng Design 14(3):119–130

    Google Scholar 

  • Chen C-H, Khoo LP, Yan W (2005) PDCS—a product definition and customisation system for product concept development. Expert Syst Appl 28(3):591–602. doi:10.1016/j.eswa.2004.12.040

    Google Scholar 

  • Corbett B, Rosen DW (2004) A configuration design based method for platform commonization for product families. AI EDAM 18(01):21–39. doi:10.1017/s089006040404003x

    Google Scholar 

  • Dai Z, Scott M (2004) Product platform design through sensitivity analysis and cluster analysis. J Intell Manuf 18(1):97–113

    Google Scholar 

  • Davis SM (1987) Future perfect. Addison-Wesley Publishing, Reading, MA

    Google Scholar 

  • Dellaert BGC, Stremersch S (2005) Marketing mass-customized products: striking a balance between utility and complexity. J Mark Res 42(2):219–227. doi:10.2307/30164019

    Google Scholar 

  • Dobrescu G, Reich Y (2003) Progressive sharing of modules among product variants. Comput Aided Des 35(9):791–806

    Google Scholar 

  • Donndelinger JA, Robinson JA, Wissman LA (2008) Choice model specification in market-based engineering design. Paper presented at the ASME international design engineering technical conferences and computers and information in engineering conference, Brooklyn, NY

  • Du J, Jiao Y-Y (2005) Integrated BOM and routing generator for variety synchronization in assembly-to-order production. J Manuf Technol Manage 16(2):233–243

    Google Scholar 

  • Du X, Jiao J, Tseng MM (2001) Architecture of product family: fundamentals and methodology. Concurr Eng Res Appl 9(4):309–325

    Google Scholar 

  • Du X, Jiao J, Tseng M (2002a) Product family modeling and design support: an approach based on graph rewriting systems. AI EDAM 16(2):103–120

    Google Scholar 

  • Du X, Jiao J, Tseng MM (2002b) Graph grammar based product family modeling. Concurr Eng 10(2):113–128. doi:10.1177/1063293x02010002635

    Google Scholar 

  • Du X, Jiao J, Tseng M (2003) Modelling platform-based product configuration using programmed attributed graph grammars. J Eng Des 14(2):145–167. doi:10.1080/0954482031000091482

    Google Scholar 

  • Durugbo C, Riedel J (2013) Viewpoint-participation-technique: a model of participative requirements elicitation. Concurr Eng Res Appl 21(1):3–12

    Google Scholar 

  • Eckert C, Clarkson PJ, Zanker W (2004) Change and customisation in complex engineering domains. Res Eng Design 15(1):1–21. doi:10.1007/s00163-003-0031-7

    Google Scholar 

  • Fan YS, Huang GQ (2007) Networked manufacturing and mass customization in the ECommerce era: the Chinese perspective. Int J Comput Integr Manuf 20(2):107–114

    MathSciNet  Google Scholar 

  • Fellini R, Kokkolaras M, Papalambros P, Perez-Duarte A (2005) Platform selection under performance loss constraints in optimal design of product families. J Mech Des 127(4):524–536

    Google Scholar 

  • Fellini R, Kokkolaras M, Papalambros P, Perez-Duarte A (2006) Commonality decisions in product family design. In: Simpson TW, Siddique Z, Jiao J (eds) Product platform and product family design: methods and applications. Springer Science + Business Media, New York, pp 157–185

    Google Scholar 

  • Ferguson S, Olewnik A, Cormier P (2011) Exploring marketing to engineering information mapping in mass customization: a presentation of ideas, challenges and resulting questions. Paper presented at the ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, DC, August 28–31

  • Fogliatto FS, da Silveira GJC (2008) Mass customization: a method for market segmentation and choice menu design. Int J Prod Econ 111(2):606–622. doi:10.1016/j.ijpe.2007.02.034

    Google Scholar 

  • Fogliatto FS, da Silveira GJC, Borenstein D (2012) The mass customization decade: an updated review of the literature. Int J Prod Econ 138(1):14–25. doi:10.1016/j.ijpe.2012.03.002

    Google Scholar 

  • Forza C, Salvador F (2002) Managing variety in the order acquisition and fulfilment process: the contribution of product configuration systems. Int J Prod Econ 76(1):87–98

    Google Scholar 

  • Frutos JD, Santos ER, Borenstein D (2004) Decision support system for product configuration in mass customization environments. Concurr Eng 12(2):131–144

    Google Scholar 

  • Fuentes-Fernandez R, Gomez-Sanz J, Pavon J (2009) Requirements elicitation and analysis of multiagent systems using activity theory. IEEE Trans Syst Man Cybern Part A Syst Hum 39(2):282–298

    Google Scholar 

  • Fuentes-Fernandez R, Gomez-Sanz J, Pavon J (2010) Understanding the human context in requirements elicitation. Requirements Eng 15(3):267–283

    Google Scholar 

  • Fujita K (2006) Simultaneous optimization of module combination and module attributes. In: Simpson TW, Siddique Z, Jiao J (eds) Product platform and product family design: methods and applications. Springer Science + Business, New York, pp 186–223

    Google Scholar 

  • Fung RYK, Chong SPY, Wang Y (2004) A framework of product styling platform approach: styling as intangible modules. Concurr Eng 12(2):89–103. doi:10.1177/1063293x04044381

    Google Scholar 

  • Gao F, Xiao G, Simpson TW (2009) Module-scale-based product platform planning. Res Eng Design 20(2):129–141. doi:10.1007/s00163-008-0061-2

    Google Scholar 

  • Gershenson J, Prasad G, Zhang Y (2003) Product modularity: definitions and benefits. J Eng Des 14(3):295–313

    Google Scholar 

  • Gilmore JH, Pine BJ (eds) (2000) Markets of one: creating customer-unique value through mass customization. Harvard Business School Press, Boston, MA

    Google Scholar 

  • Gonzalez-Zugasti JP, Otto KN, Baker JD (2000) A method for architecting product platforms. Res Eng Design 12(2):61–72. doi:10.1007/s001630050024

    Google Scholar 

  • Gonzalez-Zugasti JP, Otto KN, Baker JD (2001) Assessing value in platformed product family design. Res Eng Design 13(1):30–41. doi:10.1007/s001630100001

    Google Scholar 

  • Graessler I (2003) Impacts of information management on customized vehicles and after-sales services. Int J Comput Integr Manuf 16(7):566–570

    Google Scholar 

  • Guilabert MB, Donthu N (2006) Mass customisation and consumer behaviour: the development of a scale to measure customer customisation sensitivity. Int J Mass Cust 1(2–3):166–175. doi:10.1504/ijmassc.2006.008620

    Google Scholar 

  • Haug A, Hvam L, Mortensen N (2012) Definition and evaluation of product configurator development strategies. Comput Ind 63(5):471–481

    Google Scholar 

  • Helms B, Shea K (2012) Computational synthesis of product architectures based on object-oriented graph grammars. J Mech Des 134(2). doi:10.1115/1.4005592

  • Hofer AP, Halman JIM (2004) Complex products and systems: potential from using layout platforms. AI EDAM 18(1):55–69. doi:10.1017/s0890060404040053

    Google Scholar 

  • Hölttä-Otto K, Tang V, Otto K (2008) Analyzing module commonality for platform design using dendrograms. Res Eng Design 19(2–3):127–141. doi:10.1007/s00163-008-0044-3

    Google Scholar 

  • Huang GQ, Li L, Lau TL, Chen X (2007) A generic and extensible information infrastructure framework for mass-customizing platform products. Int J Comput Integr Manuf 20(2–3):292–306. doi:10.1080/09511920601150669

    Google Scholar 

  • Huang Y, Liu H, Ng WK, Lu W, Song B, Li X (2008) Automating knowledge acquisition for constraint-based product configuration. J Manuf Technol Manage 19(6):744–754. doi:10.1108/17410380810888120

    Google Scholar 

  • Jiang K, Lee H, Seifert R (2006) Satisfying customer preferences via mass customization and mass production. IIE Trans 38(1):25–38. doi:10.1080/07408170500346386

    Google Scholar 

  • Jianxin J, Tseng M, Qinhai M, Yi Z (2000) Generic bill-of-materials-and-operations for high-variety production management. Concurr Eng 8(4):297–321

    Google Scholar 

  • Jiao J, Tseng M (2000) Understanding product family for mass customization by developing commonality indices. J Eng Des 11(3):225–243

    Google Scholar 

  • Jiao J, Zhang Y, Helander M (2006) A Kansei mining system for affective design. Expert Syst Appl 30(4):658–673. doi:10.1016/j.eswa.2005.07.020

    Google Scholar 

  • Jiao J, Xu Q, Du J, Zhang Y, Helander M, Khalid HM, Helo P, Ni C (2007) Analytical affective design with ambient intelligence for mass customization and personalization. Int J Flex Manuf Syst 19(4):570–595

    Google Scholar 

  • Juan Y-K (2009) A hybrid approach using data envelopment analysis and case-based reasoning for housing refurbishment contractors selection and performance improvement. Expert Syst Appl 36(3, Part 1):5702–5710. doi:10.1016/j.eswa.2008.06.053

    Google Scholar 

  • Kaplan AM, Haenlein M (2006) Toward a parsimonious definition of traditional and electronic mass customization. J Prod Innov Manage 23(2):168–182. doi:10.1111/j.1540-5885.2006.00190.x

    Google Scholar 

  • Kaplan AM, Schoder D, Haenlein M (2007) Factors influencing the adoption of mass customization: the impact of base category consumption frequency and need satisfaction. J Prod Innov Manage 24(2):101–116. doi:10.1111/j.1540-5885.2007.00237.x

    Google Scholar 

  • Kelkar A, Koc B (2008) Geometric planning and analysis for hybrid reconfigurable modeling and machining process. Rapid Prototyp J 14(1):23–34

    Google Scholar 

  • Kumar D, Hoyle C, Chen W, Wang N, Gomez-Levi G, Koppelman F (2009) A hierarchical choice modelling approach for incorporating customer preferences in vehicle package design. Int J Prod Dev 8(3):228–251

    Google Scholar 

  • Kurniawan SH, So RHY, Tseng MM (2006) Consumer decision quality in mass customisation. Int J Mass Cust 1(2):176–194

    Google Scholar 

  • Lee KC, Kwon S (2008) Online shopping recommendation mechanism and its influence on consumer decisions and behaviors: a causal map approach. Expert Syst Appl 35(4):1567–1574. doi:10.1016/j.eswa.2007.08.109

    Google Scholar 

  • Li S, Nahar K, Fung BCM (2013) Product customization of tablet computers based on the information of online reviews by customers. J Intell Manuf. doi:10.1007/s10845-013-0765-7

    Google Scholar 

  • Liao S-H, Chen C-M, Hsieh C-L, Hsiao S-C (2009) Mining information users’ knowledge for one-to-one marketing on information appliance. Expert Syst Appl 36(3, Part 1):4967–4979. doi:10.1016/j.eswa.2008.06.020

    Google Scholar 

  • Liechty J, Ramaswamy V, Cohen SH (2001) Choice menus for mass customization: an experimental approach for analyzing customer demand with an application to a web-based information service. J Mark Res 38(2):183–196. doi:10.1509/jmkr.38.2.183.18849

    Google Scholar 

  • Liu Z-L, Zhang Z, Yong C (2010) A scenario-based approach for requirements management in engineering design. Concurr Eng Res Appl 20(2):99–109

    Google Scholar 

  • Liu C, Ramirez-Serrano A, Yin GF (2011) Customer-driven product design and evaluation method for collaborative design environments. J Intell Manuf 22(5):751–764

    Google Scholar 

  • Liu N, Choi T-M, Tuen C-WM, Ng F (2012) Optimal pricing, modularity, and return policy under mass customization. IEEE Trans Syst Man Cybern Part A Syst Hum 42(3):604–614

    Google Scholar 

  • Lu J-M, Wang M-JJ, Chen C-W, Wu J-H (2010) The development of an intelligent system for customized clothing making. Expert Syst Appl 37(1):799–803. doi:10.1016/j.eswa.2009.05.089

    Google Scholar 

  • Luh D-B, Ma C-H, Hsieh M-H, Huang C-Y (2012a) Using the systematic empathic design method for customer-centered products development. J Integr Des Process Sci 16(4):31–54

    Google Scholar 

  • Luh Y-P, Wang J-B, Chang J-W, Chang S-Y, Chu C-H (2012b) Augmented reality-based design customization of footwear for children. J Intell Manuf. doi:10.1007/s10845-012-0642-9

    Google Scholar 

  • Ma Y, Jiao J, Deng Y (2008) Web service-oriented electronic catalogs for product customization. Concurr Eng 16(4):263–269

    Google Scholar 

  • MacCarthy B, Brabazon PG, Bramham J (2003) Fundamental modes of operation for mass customization. Int J Prod Econ 85(3):289–304

    Google Scholar 

  • Martin M, Ishii K (2002) Design for variety: developing standardized and modularized product platform architectures. Res Eng Design 13(4):213–235. doi:10.1007/s00163-002-0020-2

    Google Scholar 

  • Mavridou E, Kehagia DD, Tzovaras D, Hassapis G (2013) Mining affective needs of automotive industry customers for building a mass-customization recommender system. J Intell Manuf 24(2):251–265

    Google Scholar 

  • McIntosh RI, Matthews J, Mullineux G, Medland AJ (2010) Late customisation: issues of mass customisation in the food industry. Int J Prod Res 48(6):1557–1574. doi:10.1080/00207540802577938

    Google Scholar 

  • Meyer M, Lehnerd A (1997) The power of product platforms: building value and cost leadership. Free Press, New York

    Google Scholar 

  • Morkos B, Shankar P, Summers JD (2012) Predicting requirement change propagation, using higher order design structure matrices: an industry case study. J Eng Des 23(12):902–923

    Google Scholar 

  • Myung S, Han S (2001) Knowledge-based parametric design of mechanical products based on configuration design method. Expert Syst Appl 21(2):99–107. doi:10.1016/s0957-4174(01)00030-6

    Google Scholar 

  • Ni M, Xu X, Deng S (2007) Extended QFD and data-mining-based methods for supplier selection in mass customization. Int J Comput Integr Manuf 20(2–3):280–291

    Google Scholar 

  • Ninan JA, Siddique Z (2006) Internet-based framework to support integration of customer in the design of customizable products. Concurr Eng 14(3):245–256

    Google Scholar 

  • Olewnik A, Hariharan VG (2010) Conjoint-HoQ: evolving a methodology to map market needs to product profiles. Int J Prod Dev 10(4):338–368

    Google Scholar 

  • Partanen J, Haapasalo H (2004) Fast production for order fulfillment: implementing mass customization in electronics industry. Int J Prod Econ 90(2):213–222

    Google Scholar 

  • Piller FT (2004) Mass customization: reflections on the state of the concept. Int J Flex Manuf Syst 16(4):313–334. doi:10.1007/s10696-005-5170-x

    MATH  Google Scholar 

  • Piller FT, Müller M (2004) A new marketing approach to mass customisation. Int J Comput Integr Manuf 17(7):583

    Google Scholar 

  • Pitta DA, Franzak F, Laric M (2003) Privacy and one-to-one marketing: resolving the conflict. J Consum Mark 20(7):616–628. doi:10.1108/07363760310506157

    Google Scholar 

  • Pitta DA, Franzak FJ, Little MW (2004) Maintaining positive returns in the value and supply chain: applying tomorrow’s marketing skills. J Consum Mark 21(7):510–519

    Google Scholar 

  • Porterfield K, Ferguson S (2012) Quantifying customer sacrifice for use in product customization problems. In: Proceedings of the 2012 ASME international design engineering technical conferences and computers and information in engineering conference, Chicago, IL, pp DETC2012-71151

  • Risdiyono, Koomsap P (2013) Design by customer: concept and applications. J Intell Manuf 24(2):295–311. doi:10.1007/s10845-011-05874

    Google Scholar 

  • Salvador F, Forza C (2004) Configuring products to address the customization-responsiveness squeeze: a survey of management issues and opportunities. Int J Prod Econ 91(3):273–291

    Google Scholar 

  • Salvador F, de Holan PM, Piller F (2009) Cracking the code of mass customization. MIT Sloan Manage Rev 50(03):70–78

    Google Scholar 

  • Sered Y, Reich Y (2006) Standardization and modularization driven by minimizing overall process effort. Comput Aided Des 38(5):405–416

    Google Scholar 

  • Shiau C-S, Tseng IH, Heutchy AW, Michalek J (2007) Design optimization of a laptop computer using aggregate and mixed logit demand models with consumer survey data. Paper presented at the ASME IDETC & CIE, Las Vegas, NV, September 4–7

  • Siddique Z, Boddu KR (2004) A mass customization information framework for integration of customer in the configuration/design of a customized product. AI EDAM 18(01):71–85. doi:10.1017/s0890060404040065

    Google Scholar 

  • Siddique Z, Ninan JA (2007) A grammatical approach for real-time design of engineer-to-order products. J Eng Des 18(2):157–174. doi:10.1080/09544820600733427

    Google Scholar 

  • Simpson T, Maier J, Mistree F (2001) Product platform design: method and application. Res Eng Design 13(1):2–22. doi:10.1007/s001630100002

    Google Scholar 

  • Simpson TW, Siddique Z, Jiao J (2006) Product platform and product family design. Springer Science + Business Media, New York

    Google Scholar 

  • Simpson TW, Bobuk A, Slingerland LA, Brennan S, Logan D, Reichard K (2012) From user requirements to commonality specifications: an integrated approach to product family design. Res Eng Design 23(2):141–153

    Google Scholar 

  • Suh ES, Weck OLd, Chang D (2007) Flexible product platforms: framework and case study. Res Eng Design 18(2):67–89. doi:10.1007/s00163-007-0032-z

    Google Scholar 

  • Trek Bicycle Corporation (2013) Project One—Bike models—Trek Bicycle. Trek Bicycle Corporation. http://www.trekbikes.com/us/en/collections/custom_project_one/models/. Accessed 30 April 2013

  • Tsai C-Y, Chen C-J, Lo Y-T (2013) A cost-based module mining method for the assemble-to-order strategy. J Intell Manuf. doi:10.1007/s10845-013-0736-z

    Google Scholar 

  • Tseng HE, Chen CC (2006) Coordinating product configuration in the order fulfilment processing: an approach based on the binary tree algorithm. Int J Comput Integr Manuf 19(7):716–726. doi:10.1080/09511920500233616

    Google Scholar 

  • Tseng H-E, Chang C–C, Chang S-H (2005) Applying case-based reasoning for product configuration in mass customization environments. Expert Syst Appl 29(4):913–925. doi:10.1016/j.eswa.2005.06.026

    Google Scholar 

  • Tuck CJ, Hague RJM, Ruffo M, Ransley M, Adams P (2008) Rapid manufacturing facilitated customization. Int J Comput Integr Manuf 21(3):245–258

    Google Scholar 

  • Turner C, Ferguson S, Donndelinger JA (2011) Exploring heterogeneity of customer preference to balance commonality and market coverage. In: Proceedings of the 2011 ASME international design engineering technical conferences and computers and information in engineering conference, Washington, DC, pp DETC2011-48581

  • Turowski K (2002) Agent-based E-commerce in case of mass customization. Int J Prod Econ 75(1–2):69–81

    Google Scholar 

  • Ulrich KT, Eppinger SD (2000) Product design and development, 2nd edn. McGraw-Hill Higher Education, Boston

    Google Scholar 

  • Vandenbroucke B, Kruth J-P (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203

    Google Scholar 

  • Waller B (2004) Market responsive manufacturing for the automotive supply chain. J Manuf Technol Manage 15(1):10–19

    Google Scholar 

  • Wang W (2009) Toward developing agility evaluation of mass customization systems using 2-tuple linguistic computing. Expert Syst Appl 36(2, Part 2):3439–3447

    Google Scholar 

  • Wang Y, Tseng MM (2011) Integrating comprehensive customer requirements into product design. CIRP Ann Manuf Technol 60(1):175–178

    MathSciNet  Google Scholar 

  • Williams CB, Allen JK, Rosen DW, Mistree F (2007) Designing platforms for customizable products and processes in markets of non-uniform demand. Concurr Eng 15(2):201–216. doi:10.1177/1063293x07079328

    Google Scholar 

  • Yang D, Dong M (2013) Applying constraint satisfaction approach to solve product configuration problems with cardinality-based configuration rules. J Intell Manuf 24(1):99–111

    MathSciNet  Google Scholar 

  • Yang QH, Qi GN, Lu YJ, Gu XJ (2007) Applying mass customization to the production of industrial steam turbines. Int J Comput Integr Manuf 20(2–3):178–188. doi:10.1080/09511920601020698

    Google Scholar 

  • Yang D, Miao R, Wu H, Zhou Y (2009) Product configuration knowledge modeling using ontology web language. Expert Syst Appl 36(3, Part 1):4399–4411. doi:10.1016/j.eswa.2008.05.026

    Google Scholar 

  • Yao AC, Carlson JGH (2003) Agility and mixed-model furniture production. Int J Prod Econ 81–82:95–102

    Google Scholar 

  • Yao J, Liu L (2009) Optimization analysis of supply chain scheduling in mass customization. Int J Prod Econ 117(1):197–211

    Google Scholar 

  • Yeh J-Y, Wu T-H (2005) Solutions for product configuration management: an empirical study. AI EDAM 19(01):39–47. doi:10.1017/s0890060405050043

    Google Scholar 

  • Yilmaz S, Seifert CM, Gonzalez R (2010) Cognitive heuristics in design: instructional strategies to increase creativity in idea generation. AI EDAM 24(3):335–355

    Google Scholar 

  • Yu T, Yassine AA, Goldberg DE (2007) An information theoretic method for developing modular architectures using genetic algorithms. Res Eng Design 18:91–109

    MATH  Google Scholar 

  • Zangiacomi A, Zhtjtan L, Sacco M, Boer CR (2004) Process planning and scheduling for mass customized shoe manufacturing. Int J Comput Integr Manuf 17(7):613–621

    Google Scholar 

  • Zha XF, Sriram RD, Lu WF (2004) Evaluation and selection in product design for mass customization: a knowledge decision support approach. AI EDAM

  • Zhang X, Chen R (2008) Examining the mechanism of the value co-creation with customers. Int J Prod Econ 116(2):242–250. doi:10.1016/j.ijpe.2008.09.004

    Google Scholar 

  • Zhang T, Efsthathiou J (2006) The complexity of mass customization systems under different inventory strategies. Int J Comput Integr Manuf 19(5):423–433

    Google Scholar 

  • Zhao Y, Fan YS (2007) Implementation approach of ERP with MC. Int J Comput Integr Manuf 20(2–3):160–168

    Google Scholar 

  • Zhou F, Ji Y, Jiao J (2012) Affective and cognitive design for mass personalization: status and prospect. J Intell Manuf. doi:10.1007/s10845-012-0673-2

    Google Scholar 

  • Zipkin P (1997) The limits of mass customization. MIT Sloan Manage Rev 42(3):81–87

    Google Scholar 

  • Ziv-Av A, Reich Y (2005) SOS—subjective objective system for generating optimal product concepts. Des Stud 26(5):509–533. doi:10.1016/j.destud.2004.12.001

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the National Science Foundation through NSF CAREER Grant No. CMMI-1054208. Any opinions, findings and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. Olewnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, S.M., Olewnik, A.T. & Cormier, P. A review of mass customization across marketing, engineering and distribution domains toward development of a process framework. Res Eng Design 25, 11–30 (2014). https://doi.org/10.1007/s00163-013-0162-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00163-013-0162-4

Keywords

Navigation