Skip to main content
Log in

Multi-scale study of the transitional shock-wave boundary layer interaction in hypersonic flow

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A high-fidelity simulation of the massively separated shock/transitional boundary layer interaction caused by a 15-degrees axisymmetrical compression ramp is performed at a free stream Mach number of 6 and a transitional Reynolds number. The chosen configuration yields a strongly multiscale dynamics of the flow as the separated region oscillates at low-frequency, and high-frequency transitional instabilities are triggered by the injection of a generic noise at the inlet of the simulation. The simulation is post-processed using Proper Orthogonal Decomposition to extract the large scale low-frequency dynamics of the recirculation region. The bubble dynamics from the simulation is then compared to the results of a global linear stability analysis about the mean flow. A critical interpretation of the eigenspectrum of the linearized Navier–Stokes operator is presented. The recirculation region dynamics is found to be dominated by two coexisting modes, a quasi-steady one that expresses itself mainly in the reattachment region and that is caused by the interaction of two self-sustained instabilities, and an unsteady one linked with the separation shock-wave and the mixing layer. The unsteady mode is driven by a feedback loop in the recirculation region, which may also be relevant for other unsteady shock-motion already documented for shock-wave/turbulent boundary layer interaction. The impact of the large-scale dynamics on the transitional one is then assessed through the numerical filtering of those low wavenumber modes; they are found to have no impact on the transitional dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Fasel, H.F., Thumm, A., Bestek, H.: Direct numerical simulation of transition in supersonic boundary layers oblique breakdown. In: Fluids Engineering Conference (Publ by ASME, 1993), pp. 77–92

  2. Adams, N., Kleiser, L.: Numerical simulation of fundamental breakdown of a laminar boundary-layer at Mach 4.5. In: 5th International Aerospace Planes and Hypersonics Technologies Conference, p. 5027 (1993)

  3. Franko, K.J., Lele, S.K.: Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers. J. Fluid Mech. 730, 491–532 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Franko, K.J., Lele, S.: Effect of adverse pressure gradient on high speed boundary layer transition. Phys. Fluids 26(2), 024106 (2014)

    Article  Google Scholar 

  5. Hader, C., Fasel, H.F.: Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances. J. Fluid Mech. 847 (2018)

  6. Lugrin, M., Beneddine, S., Leclercq, C., Garnier, E., Bur, R.: Transition scenario in hypersonic axisymmetrical compression ramp flow. J. Fluid Mech. 907 (2021)

  7. Marxen, O., Rist, U.: Mean flow deformation in a laminar separation bubble separation and stability characteristics. J. Fluid Mech. 660, 37 (2010)

    Article  MATH  Google Scholar 

  8. Sandham, N., Reynolds, W.: Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133 (1991)

    Article  MATH  Google Scholar 

  9. Gortler, H.: Instabilitat laminarer Grenzschichten an konkaven Wanden gegenuber gewissen dreidimensionalen Storungen. Zeitschrift für Angew. Math. und Mech. 21(4), 250 (1940)

    Article  MATH  Google Scholar 

  10. Dwivedi, A., Sidharth, G., Nichols, J.W., Candler, G.V., Jovanovi’c, M.R.: Reattachment streaks in hypersonic compression ramp flow an input-output analysis. J. Fluid Mech. 880, 113 (2019)

  11. Robinet, J.C.: Bifurcations in shock-wavelaminar-boundary-layer interaction global instability approach. J. Fluid Mech. 579, 85 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hildebrand, N., Dwivedi, A., Nichols, J.W., Jovanovi’c, M.R., Candler, G.V.: Simulation and stability analysis of oblique shock-waveboundary-layer interactions at Mach 5.92. Phys. Rev. Fluids 3(1), 013906 (2018)

  13. Sidharth, G., Dwivedi, A., Candler, G.V., Nichols, J.W.: Onset of three-dimensionality in supersonic flow over a slender double wedge. Phys. Rev. Fluids 3(9), 093901 (2018)

  14. Cao, S., Hao, J., Klioutchnikov, I., Olivier, H., Wen, C.Y.: Unsteady effects in a hypersonic compression ramp flow with laminar separation. J. Fluid Mech. 912, A3 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Adams, N.A.: Direct simulation of the turbulent boundary layer along a compression ramp at \(M = 3\) and \({Re}\theta = 1685\). J. Fluid Mech. 420, 47–83 (2000)

    Article  MATH  Google Scholar 

  16. Wu, M., Martin, M.P.: Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45(4), 879 (2007)

    Article  Google Scholar 

  17. Priebe, S., Martin, M.P.: Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. J. Fluid Mech. 699, 1 (2012)

    Article  MATH  Google Scholar 

  18. Priebe, S., Tu, J.H., Rowley, C.W., Martin, M.P.: Low-frequency dynamics in a shock-induced separated flow. J. Fluid Mech. 807, 441 (2016)

    Article  Google Scholar 

  19. Agostini, L., Larchevêque, L., Dupont, P.: Mechanism of shock unsteadiness in separated shock/boundary-layer interactions. Phys. Fluids 27(12), 126103 (2015)

    Article  Google Scholar 

  20. Debiève, J.F., Dupont, P.: Dependence between the shock and the separation bubble in a shock wave boundary layer interaction. Shock Waves 19(6), 499 (2009)

    Article  Google Scholar 

  21. Touber, E., Sandham, N.D.: Low-order stochastic modelling of low-frequency motions in reflected shock-wave boundary-layer interactions. J. Fluid Mech. 671, 417 (2011)

    Article  MATH  Google Scholar 

  22. Piponniau, S., Dussauge, J.P., Debieve, J.F., Dupont, P.: A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87 (2009)

    Article  MATH  Google Scholar 

  23. Nichols, J.W., Larsson, J., Bernardini, M., Pirozzoli, S.: Stability and modal analysis of shock/boundary layer interactions. Theor. Comput. Fluid Dyn. 31(1), 33 (2017)

    Article  Google Scholar 

  24. Clemens, N.T., Narayanaswamy, V.: Low-frequency unsteadiness of shock WaveTurbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46(1), 469 (2014)

    Article  MATH  Google Scholar 

  25. Bur, R., Chanetz, B.: Experimental study on the PRE-X vehicle focusing on the transitional shock-wave boundary-layer interactions. Aerosp. Sci. Technol. 13(7), 393 (2009)

    Article  Google Scholar 

  26. Benay, R., Chanetz, B., Mangin, B., Vandomme, L., Perraud, J.: Shock wavetransitional boundary–layer interactions in hypersonic flow. AIAA J. 44(6), 1243 (2006)

  27. Péron, S., Renaud, T., Mary, I., Benoit, C., Terracol, M.: An immersed boundary method for preliminary design aerodynamic studies of complex configurations. In: 23rd AIAA Computational Fluid Dynamics Conference, p. 3623 (2017)

  28. Mary, I., Sagaut, P.: Large eddy simulation of flow around an airfoil near stall. AIAA J. 40 (6), 1139–1145 (2002)

  29. Spalart, P.R.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21(3), 252 (2000)

    Article  Google Scholar 

  30. Lumley, J.: Stochastic Tools in Turbulence. New York Academic (1970)

  31. Gudmundsson, K., Colonius, T.: Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97 (2011)

    Article  MATH  Google Scholar 

  32. Towne, A., Schmidt, O.T., Colonius, T.: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. McClellan, J., Parks, T.: A unified approach to the design of optimum FIR linear-phase digital filters. IEEE Trans. Circuit Theory 20(6), 697 (1973)

    Article  Google Scholar 

  34. McKeon, B.J., Sharma, A.S.: A critical layer model for turbulent pipe flow, arXiv preprint arXiv:1001.3100 (2010)

  35. Beneddine, S., Sipp, D., Arnault, A., Dandois, J., Lesshafft, L.: Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sipp, D., Lebedev, A.: Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333 (2007)

    Article  MATH  Google Scholar 

  37. Turton, S.E., Tuckerman, L.S., Barkley, D.: Prediction of frequencies in thermosolutal convection from mean flows. Phys. Rev. E 91(4), 043009 (2015)

    Article  MathSciNet  Google Scholar 

  38. Mettot, C., Renac, F., Sipp, D.: Computation of eigenvalue sensitivity to base flow modifications in a discrete framework: application to open-loop control. J. Comput. Phys. 269, 234 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Karban, U., Bugeat, B., Martini, E., Towne, A., Cavalieri, A., Lesshafft, L., Agarwal, A., Jordan, P., Colonius, T.: Ambiguity in mean-flow-based linear analysis, arXiv preprint arXiv:2005.05703 (2020)

  40. Schmid, P.J., de Pando, M.F., Peake, N.: Stability analysis for n-periodic arrays of fluid systems. Phys. Rev. Fluids 2(11), 113902 (2017)

    Article  Google Scholar 

  41. Paladini, E., Beneddine, S., Dandois, J., Sipp, D., Robinet, J.C.: Transonic buffet instability: from two-dimensional airfoils to three-dimensional swept wings. Phys. Rev. Fluids 4(10), 103906 (2019)

    Article  Google Scholar 

  42. Giannetti, F., Luchini, P.: Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581(1), 167 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Marquet, O., Sipp, D., Jacquin, L.: Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Luchini, P., Giannetti, F., Pralits, J.: Structural sensitivity of the finite-amplitude vortex shedding behind a circular cylinder. In: IUTAM Symposium on Unsteady Separated Flows and their Control (Springer, 2009), pp. 151–160

  45. Pickering, E.M., Towne, A., Jordan, P., Colonius, T.: Resolvent-based jet noise models a projection approach. In: AIAA Scitech 2020 Forum, p. 0999 (2020)

  46. Touber, E., Sandham, N.D.: Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theoret. Comput. Fluid Dyn. 23(2), 79 (2009)

    Article  MATH  Google Scholar 

  47. Wu, M., Martin, M.P.: Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 71 (2008)

    Article  MATH  Google Scholar 

  48. Narasimha, R.: Modelling the transitional boundary layer. In: Modelling the Transitional Boundary Layer (NASA, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1990)

  49. Arnal, D., Juillen, J.C.: Etude de l’intermittence dans une r’egion de transition de la couche limite, La Recherche Aérospatiale, pp. 147–166 (1977)

  50. Chu, B.T.: On the energy transfer to small disturbances in fluid flow (Part I). Acta Mech. 1(3), 215 (1965)

    Article  Google Scholar 

  51. Hanifi, A., Schmid, P.J., Henningson, D.S.: Transient growth in compressible boundary layer flow. Phys. Fluids 8(3), 826 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  52. George, K.J., Sujith, R.: On Chu’s disturbance energy. J. Sound Vib. 330(22), 5280 (2011)

  53. Bugeat, B., Chassaing, J.C., Robinet, J.C., Sagaut, P.: 3D global optimal forcing and response of the supersonic boundary layer. J. Comput. Phys., p. 108888 (2019)

  54. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the French Alternative Energies and Atomic Energy Commission (CEA) under the grant CEA 4600334751. The QDNS A and B (see Table 2) were performed on the OCCIGEN supercomputer at CINES under the GENCI allocation A0072A11041. The authors thank Julien Dandois for its comment on the article. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lugrin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sergio Pirozzoli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Noise injection

This section is dedicated to the technical description of the white noise injection in the QDNSs following the procedure described in [6]. The injection is realized 4 cells downstream (\(i=4\)) of the inlet boundary condition in order not to interfere with it. The form of this injection is the following :

$$\begin{aligned} \rho '[j,k]=\rho [j,k] (1+ 0.01 r_{n}[j,k]) \end{aligned}$$
(3)

With \(r_{n}\) a random number normalized such that the root-mean-square on the whole injection plane is 1:

$$\begin{aligned} r_{n}[j,k] = \frac{r_{r}[j,k]}{\sqrt{\overline{r_{r}^2}}} \end{aligned}$$
(4)

\(r_{r}\) being a random number from a continuous uniform distribution between \(-0.5\) and 0.5, \(\overline{.}\) being for this special case a spatial average and jk ranging the indices of the cell of the injection plan (i.e. \(j\in [0,60]\) for the wall normal direction and \(k\in [0,k_{max}]\) in the azimuthal direction). As the time step used in the computation is far less than the convection time through one cell in the streamwise direction, the spatial scheme would be unable to transport a white noise that is updated every iteration. To address this issue, it was chosen not to update the noise every iteration, but to keep it constant for 15 iterations between each update. This ensures that the scheme can discretize the noise while the spectral content is still rich enough in the high frequencies for the present study, a power spectral density of pressure perturbations created by the noise is presented in Fig. 2.

Appendix 2: Azimuthal decomposition of the Jacobian operator

Since the solver FAST works internally with Cartesian coordinates, one has to first carry out a transformation to cylindrical coordinates to retrieve the axisymmetry of the flow using the following relation

$$\begin{aligned} \left( \begin{array}{c} \rho \\ \rho {u_x}\\ \rho {u_r}\\ \rho u_\theta \\ \rho E \\ \end{array} \right) = \left[ \begin{array}{ccccc} 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad cos(\theta ) &{}\quad sin(\theta ) &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad -sin(\theta ) &{}\quad cos(\theta ) &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ \end{array} \right] \left( \begin{array}{c} \rho \\ \rho {u_x}\\ \rho {u_y}\\ \rho u_z \\ \rho E \\ \end{array} \right) \end{aligned}$$
(5)

Under appropriate indexing of the degrees of freedom, the Jacobian operator can then be rearranged into the block-circulant form

$$\begin{aligned} {\mathbf {J}} = \left[ \begin{array}{ccccc} {\mathbf {A}}_0 &{}\quad {\mathbf {A}}_1 &{}\quad ... &{}\quad {\mathbf {A}}_{n-2} &{}\quad {\mathbf {A}}_{n-1}\\ {\mathbf {A}}_{n-1} &{}\quad {\mathbf {A}}_0 &{}\quad ... &{}\quad {\mathbf {A}}_{n-3}&{}\quad {\mathbf {A}}_{n-2}\\ {\mathbf {A}}_{n-2} &{} \quad {\mathbf {A}}_{n-1} &{}\quad ... &{}\quad {\mathbf {A}}_{n-4} &{}\quad {\mathbf {A}}_{n-3}\\ \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots \\ {\mathbf {A}}_1 &{}\quad {\mathbf {A}}_2&{}\quad ... &{}\quad {\mathbf {A}}_{n-1} &{}\quad {\mathbf {A}}_{0}\\ \end{array} \right] , \end{aligned}$$
(6)

where each line of blocks corresponds to a given azimuthal slice of the mesh and the block matrices \({\mathbf {A}}_0\), ..., \({\mathbf {A}}_{n-1}\) have a size corresponding to such a slice (the size of a 2D problem). The block-circulant nature of the matrix comes from the numerical and physical equivalence of all azimuthal slices of the mean flow, which cannot be distinguished from one another. As shown by Schmid et al. [40], this block circulant matrix can then be transformed into a block-diagonal matrix

$$\begin{aligned} {\tilde{\mathbf{J}}} = \left[ \begin{array}{ccccc} {\tilde{\mathbf{A}}}_0 &{} &{} &{} &{} \\ &{} {\tilde{\mathbf{A}}}_1 &{} &{} &{}\\ &{} &{} \ddots &{} &{}\ \\ &{} &{} &{} &{} {\tilde{\mathbf{A}}}_{n-1}\\ \end{array} \right] , \end{aligned}$$
(7)

with

$$\begin{aligned} {\tilde{\mathbf{A}}}_m = {\mathbf {A}}_0 + \rho _m {\mathbf {A}}_1 + \rho _m^2 {\mathbf {A}}_2 + ... + \rho _m^{n-1} {\mathbf {A}}_{n-1}, \end{aligned}$$
(8)

and \(\rho _m=e^{\frac{j 2 \pi m}{n}}\) corresponding to a m-root of unity.

This leads to independent studies for each wavenumber of interest through the study of the eigenvalues of the reduced operator \({\tilde{\mathbf{A}}}_m\) instead of the full operator \({\mathbf {J}}\).

Appendix 3: Numerical procedure for the proper orthogonal decomposition

First, \(N_{r}=600\) snapshots are randomly sampled from the pool of filtered snapshots, then a Discrete Fourier Transform (DFT) is applied in the azimuthal direction, giving Fourier mode vectors \({\hat{\mathbf{S}}}^{k}\!(m)\), where k is the realisation number and m the azimuthal wavenumber of the mode. Due to the spectral transformation in the azimuthal direction, the vectors \({\hat{\mathbf{S}}}^{k}\!(m)\) correspond to bi-dimensional fields: they contain complex values associated with each flow variables at each pair (xr) from the mesh. For a given wavenumber (m) of interest, the Fourier modes of all realisations are then stacked in a matrix \(\hat{{\mathbf {X}}}_{m}\), which reads

$$\begin{aligned} {\hat{\mathbf{X}}}_{m} =\left[ {\hat{\mathbf{S}}}^{0}\!(m), \ {\hat{\mathbf{S}}}^{1}\!(m), \ \cdots , \ {\hat{\mathbf{S}}}^{N_r-1}\!(m) \right] . \end{aligned}$$
(9)

This matrix is then processed similarly to a snapshot matrix in a classical POD decomposition: the i-th POD mode \(\mathbf {\phi _i}^{(m)}\) can be computed from the i-th left singular vector of \({\hat{\mathbf{X}}}_{m}\), which may be computed by solving the eigenproblem associated with the cross spectral density matrix

$$\begin{aligned} {\hat{\mathbf{X}}}_{m} {\hat{\mathbf{X}}}_{m}^\star \mathbf {Q_e} \ \mathbf {\psi _i}^{(m)} = \lambda _i \mathbf {\psi _i}^{(m)}, \end{aligned}$$
(10)

with \(\mathbf {Q_e}\) the inner product associated with the energy norm defined by Chu [50] :

$$\begin{aligned} {{\mathbf{Q}}_{\mathbf{e}}}= & {} \Omega \left[ \begin{array}{ccccc} \frac{|\mathbf {\overline{u}}|^2 + R \overline{T}}{\overline{\rho }} + a_1 a_2^2 &{}\quad \frac{-\overline{u_x} (1+a_1 a_2)}{\overline{\rho }} &{}\quad \frac{-\overline{u_r} (1+a_1 a_2)}{\overline{\rho }} &{}\quad \frac{-\overline{u_\theta } (1+a_1 a_2)}{\overline{\rho }} &{}\quad \frac{a_1 a_2}{\overline{\rho }} \\ \frac{-\overline{u_x} (1+a_1 a_2)}{\overline{\rho }} &{}\quad \frac{\rho +\overline{u_x^2}a_1}{\overline{\rho ^2}} &{}\quad \frac{\overline{u_x u_r}a_1}{\overline{\rho ^2}} &{}\quad \frac{\overline{u_x u_\theta }a_1}{\overline{\rho ^2}} &{}\quad - \frac{\overline{u_x}a_1}{\overline{\rho ^2}} \\ \frac{-\overline{u_r} (1+a_1 a_2)}{\overline{\rho }} &{}\quad \frac{\overline{u_x u_r}a_1}{\overline{\rho ^2}} &{}\quad \frac{\rho +\overline{u_r^2}a_1}{\overline{\rho ^2}} &{}\quad \frac{\overline{u_r u_\theta }a_1}{\overline{\rho ^2}} &{}\quad - \frac{\overline{u_r}a_1}{\overline{\rho ^2}} \\ \frac{-\overline{u_\theta } (1+a_1 a_2)}{\overline{\rho }} &{}\quad \frac{\overline{u_x u_\theta }a_1}{\overline{\rho ^2}} &{}\quad \frac{\overline{u_r u_\theta }a_1}{\overline{\rho ^2}} &{}\quad \frac{\rho +\overline{u_\theta ^2}a_1}{\overline{\rho ^2}} &{}\quad -\frac{\overline{u_\theta }a_1}{\overline{\rho ^2}} \\ \frac{a_1 a_2}{\overline{\rho }} &{}\quad -\frac{\overline{u_x} a_1}{\overline{\rho ^2}} &{}\quad -\frac{\overline{u_r} a_1}{\overline{\rho ^2}} &{}\quad -\frac{\overline{u_\theta } a_1}{\overline{\rho ^2}} &{}\quad \frac{a_1}{\overline{\rho ^2}} \\ \end{array} \right] \end{aligned}$$
(11)
$$\begin{aligned} a_1= & {} \frac{\overline{\rho }}{C_v \overline{T}} \end{aligned}$$
(12)
$$\begin{aligned} a_2= & {} \frac{\frac{|\overline{{\mathbf {u}}}|^2}{2} - \overline{e}}{\overline{\rho }} \end{aligned}$$
(13)

With \(\Omega \) the local cell volume and e the internal energy. This norm is commonly used in order to describe fluctuation energy in compressible flow [51,52,53] and is more adapted than a simple kinetic energy norm often used for (quasi-)incompressible flows. The POD modes are ordered with respect to their contribution to the global dynamics, i.e. \(\lambda _0> \lambda _1> \lambda _2>\dots \), and for a given wavenumber (m), the relative contribution of the i-th POD mode is measured by the ratio \(r_i = \lambda _i / \sum _k \lambda _k\).

In practice, the eigenmodes are computed by using the snapshots method of [54] which is a less costly but equivalent decomposition based on \( \hat{{\mathbf {X}}}_{m}^\star \mathbf {Q_e} \hat{{\mathbf {X}}}_{m}\) rather than (10). This provides the right singular vectors of \(\hat{{\mathbf {X}}}_{m}\), from which one can easily retrieve the POD modes (see for instance [32] for details). Note that it is possible to localise the POD analysis to a given region of the flow by setting all coefficients of \(\mathbf {Q_e}\) associated with cells outside of this region to zero. The eigenvalue is then defined as the energy restrained to this specific zone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugrin, M., Beneddine, S., Garnier, E. et al. Multi-scale study of the transitional shock-wave boundary layer interaction in hypersonic flow. Theor. Comput. Fluid Dyn. 36, 277–302 (2022). https://doi.org/10.1007/s00162-021-00595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-021-00595-7

Keywords

Navigation