Skip to main content
Log in

A spectral approach for the stability analysis of turbulent open-channel flows over granular beds

  • Orginal Paper
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A novel Orr–Sommerfeld-like equation for gravity-driven turbulent open-channel flows over a granular erodible bed is here derived, and the linear stability analysis is developed. The whole spectrum of eigenvalues and eigenvectors of the complete generalized eigenvalue problem is computed and analyzed. The fourth-order eigenvalue problem presents singular non-polynomial coefficients with non-homogenous Robin-type boundary conditions that involve first and second derivatives. Furthermore, the Exner condition is imposed at an internal point. We propose a numerical discretization of spectral type based on a single-domain Galerkin scheme. In order to manage the presence of singular coefficients, some properties of Jacobi polynomials have been carefully blended with numerical integration of Gauss–Legendre type. The results show a positive agreement with the classical experimental data and allow one to relate the different types of instability to such parameters as the Froude number, wavenumber, and the roughness scale. The eigenfunctions allow two types of boundary layers to be distinguished, scaling, respectively, with the roughness height and the saltation layer for the bedload sediment transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreotti B., Fourriere A., Ould-Kaddour F., Murray B., Claudin P.: Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature 457(7233), 1120–1123 (2009). doi:10.1038/nature07787

    Article  Google Scholar 

  2. Best J.: The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. 110, F04S02 (2005)

    Article  Google Scholar 

  3. Blumberg P.N., Curl R.L.: Experimental and theoretical studies of dissolution roughness. J. Fluid Mech. 65, 735–751 (1974)

    Article  Google Scholar 

  4. Butler K.M., Farrel B.F.: Three-dimensional optimal perturbations in viscous shear flows. Phys. Fluids A 4, 1637–1650 (1992)

    Article  Google Scholar 

  5. Camporeale, C., Ridolfi, L.: Nonnormality and transient behavior of the de Saint-Venant-Exner equations. Water Resour. Res. 45(8), (2009)

  6. Canuto C., Hussaini M., Quarteroni A., Zang T.: Spectral Methods. Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Canuto C., Hussaini M., Quarteroni A., Zang T.: Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    MATH  Google Scholar 

  8. Carling P., Richardson K., Ikeda H.: A flume experiment of the development of subacqueous fine-gravel dunes from a lower-stage plane bed. J. Geophys. Res. Earth Surf. 110, F04S05 (2005)

    Article  Google Scholar 

  9. Colombini M.: Revisiting the linear theory of sand dune formation. J. Fluid Mech. 502, 1–16 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Colombini M., Stocchino A.: Finite-amplitude river dunes. J. Fluid Mech. 611, 283–306 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Criminale W., Jackson T., Joslin R.: Theory and Computation in Hydrodynamic Stability. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  12. Davis P., Rabinowitz P.: Methods of Numerical Integration. Academic Press, London (1984)

    MATH  Google Scholar 

  13. Devauchelle O., Malverti L., Lajeunesse E., Lagree P.Y., Josserand C., Thu-Lam K.D.N.: Stability of bedforms in laminar flows with free surface: from bars to ripples. J. Fluid Mech. 642, 329–348 (2010). doi:10.1017/S0022112009991790

    Article  MATH  Google Scholar 

  14. DiPrima R., Habetler G.: A completeness theorem for non-selfadjoint eigenvalue problems in hydrodynamic stabiilty. Arch. Rat. Mech. Anal. 32, 218–227 (1969)

    Article  MathSciNet  Google Scholar 

  15. Dongarra J., Straughan B., Walker D.: Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22(4), 399–434 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Drake T., Shreve R., Dietrich W., Whiting P., Leopold L.: Bedload transport of fine gravel observed by motion-picture photograhy. J. Fluid Mech. 192, 193–217 (1988)

    Article  Google Scholar 

  17. Drazin P., Reid W.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  18. Dufek J., Bergantz G.W.: Suspended load and bed-load transport of particle-laden gravity currents: the role of particle-bed interaction. Theor. Comput. Fluid Dyn. 21(2), 119–145 (2007). doi:10.1007/s00162-007-0041-6

    Article  MATH  Google Scholar 

  19. Engelund F., Fredsoe J.: Sediment ripples and dunes. Ann. Rev. Fluid Mech. 14, 13–37 (1982)

    Article  Google Scholar 

  20. Exner, F.M.: Uber Die Wechselwirkung Zwischen Wasser und Geschiebe in Flussen, pp. 165–180. Sitzer Akad. Wiss, Wien (1925)

  21. Feltham D.L., Worster M.G.: Flow-induced morphological instabilty in mushy layer. J. Fluid Mech. 391, 337–357 (1999)

    Article  MATH  Google Scholar 

  22. Fourriere A., Claudin P., Andreotti B.: Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening. J. Fluid Mech. 649, 287–328 (2010). doi:10.1017/S0022112009993466

    Article  MATH  MathSciNet  Google Scholar 

  23. Fredsoe J.: On the development of dunes in erodible channels. J. Fluid Mech. 64, 1–16 (1974)

    Article  MATH  Google Scholar 

  24. Giannakis D., Fischer P.F., Rosner R.: A spectral Galerkin method for the coupled Orr-Sommerfeld and induction equations for free-surface MHD. J. Comp. Phys. 228(4), 1188–1233 (2009). doi:10.1016/j.jcp.2008.10.016

    Article  MATH  MathSciNet  Google Scholar 

  25. Golub G., Welsch J.: Calculation of Gauss quadratures rules. Math. Comp 23, 221–230 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  26. Grosch C., Salwen H.: The stability of steady and time-dependent plane Poiseuille flow. J. Fluid Mech. 34, 177–194 (1968)

    Article  MATH  Google Scholar 

  27. Gustavsonn L.H.: Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241–260 (1991)

    Article  Google Scholar 

  28. Guy, H., Simons, D., Richardson, E.: Summary of alluvial channel data from flume experiments. Prof. paper 462-I. US Geol. Survey (1966)

  29. Huppert H.E., Dade W.B.: Natural disasters: explosive volcanic eruptions and gigantic landslides. Theor. Comp. Fluid Dyn. 10(1–4), 201–212 (1998)

    Article  MATH  Google Scholar 

  30. Kirchner, N.: Computational aspects of the spectral Galerkin fem for the Orr-Sommerfeld equation. Int. J. Numer. Meth. Fluids 119–137 (2000)

  31. Kleinhans M.: Sorting in grain flows at the lee side of dunes. Earth Sci. Rev. 65(1–2), 75–102 (2004). doi:10.1016/S0012-8252(03)00081-3

    Article  Google Scholar 

  32. Kopriva D.: Implementing Spectral Methods for Partial Differential Equations. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  33. Langlois V., Valance A.: Formation of two-dimensional sand ripples under laminar shear flow. Phys. Rev. Lett. 94(24), 1–4 (2005)

    Article  Google Scholar 

  34. Lanzoni, S., Siviglia, A., Frascati, A., Seminara, G.: Long waves in erodible channels and morphodynamic influence. Water Resour. Res. 42(6) (2006). doi:10.1029/2006WR004916

  35. Melenk J., Kirchner N., Schwab C.: Spectral Galerkin discretization for hydrodynamic stability problems. Computing 65, 97–118 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Meyer-Peter, E., Müller, R.: Formulas for bed-load transport. In: Proceedings 2nd Meeting IAHR, pp. 39–64 (1948)

  37. Nezu I., Rodi W.: Open-channel flow measurements with a laser Doppler Anemometer. J. Hydraul. Eng. ASCE 112, 335–355 (1986)

    Article  Google Scholar 

  38. Olsson P.J., Henningson D.S.: Optimal disturbance growth in water table flow. Stud. Appl. Maths 94, 183–210 (1995)

    MATH  MathSciNet  Google Scholar 

  39. Orszag S.: Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 689 (1971)

    Article  MATH  Google Scholar 

  40. Packman A., Brooks N.: Hyporheic exchange of solutes and colloids with moving bed forms. Water Resour. Res. 37(10), 2591–2605 (2001)

    Article  Google Scholar 

  41. Parker, G.: 1D sediment transport morphodynamics (2003). http://vtchl.uiuc.edu/people/parkerg/morphodynamics_e-book.htm

  42. Parker G., Seminara G., Solari L.: Bed load at low shields stress on arbitrarily sloping beds: alternative entrainment formulation. Water Resour. Res. 39, 1183 (2003)

    Article  Google Scholar 

  43. Pope S.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  44. Reddy S., Schmid P., Henningson D.: Pseudospectra of the Orr-Sommerfeld operator. SIAM J. Appl. Math. 53(1), 15–47 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  45. Reddy S.C., Henningson D.S.: Energy growth in viscous channel. J. Fluid Mech. 252, 209–238 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  46. Richards K.: The formation of ripples and dunes on an erodible bed. J. Fluid Mech. 99, 597–618 (1980)

    Article  MATH  Google Scholar 

  47. Schmid P.: Nonmodal stability theory. Ann. Rev. Fluid Mech. 39, 129–162 (2007)

    Article  Google Scholar 

  48. Schmid, P.J., Henningson, D.S.: Stability and transition in shear flows. Appl. Math. Sci., vol. 142. Springer, New York (2001)

  49. Sekine M., Kikkawa H.: Mechanics of salting grains. J. Hydraul. Engng. ASCE 118, 536–558 (1992)

    Article  Google Scholar 

  50. Seminara G.: Stability and morphodynamics. Meccanica 33, 59–99 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  51. Seminara G.: Fluvial sedimentary patterns. Ann. Rev. Fluid Mech. 42, 43–66 (2010). doi:10.1146/annurev-fluid-121108-145612

    Article  Google Scholar 

  52. Shen J.: Efficient spectral-galerkin methods I. Direct solvers for the second and fourth order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  53. Swarztrauber P.: On computing the points and weights for Gauss-Legendre quadrature. SIAM J. Sci. Comput. 24(3), 945–954 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  54. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1939)

  55. Trefethen L.N., Embree M.: Spectra and Pseudospectra. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  56. Vanoni V.: Sedimentation Engineering. ASCE Manual and Reports on Engineering Practice. ASCE, New York (1975)

    Google Scholar 

  57. Whitham G.B.: Linear and Nonlinear Waves. Wiley-Intercience, New York (1974)

    MATH  Google Scholar 

  58. Wong M., Parker G.: Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database. J. Hydraul. Engng. ASCE 132, 1159–1168 (2006)

    Article  Google Scholar 

  59. Yakimiw E.: Accurate computation of weights in classical Gauss–Christoffel quadrature rules. J Comput. Phys. 129, 406–430 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Camporeale.

Additional information

Communicated by: Malik

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camporeale, C., Canuto, C. & Ridolfi, L. A spectral approach for the stability analysis of turbulent open-channel flows over granular beds. Theor. Comput. Fluid Dyn. 26, 51–80 (2012). https://doi.org/10.1007/s00162-011-0223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-011-0223-0

Keywords

Navigation