Skip to main content
Log in

Numerical simulations of liquid metal experiments on cosmic magnetic fields

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Cosmic magnetic fields, including the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. They also play an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability. The last 10 years have seen tremendous efforts in studying both effects in liquid metal experiments. This paper is focused on the numerical attempts that were undertaken to understand, optimize, and analyze those experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrus Peregrinus de Maricourt: Opera. Scuola normale superiore, Pisa (1995)

  2. Gilbert, W.: De Magnete. Translated by Mottelay, P.F., Dover, New York (1958)

  3. Merrill R.T., McElhinny M.C., McFadden P.L.: The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. Academic Press, San Diego (1998)

    Google Scholar 

  4. Stevenson D.J.: Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–11 (2003)

    Google Scholar 

  5. Connerney J.E.P., Acuña M.H., Wasilewski P.J., Kletetschka G., Ness N.F., Rème H., Lin R.P., Mitchell D.L.: The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28, 4015–4018 (2001)

    Google Scholar 

  6. Stevenson D.J.: Planetary magnetic fields. Rep. Progr. Phys. 46, 555–620 (1983)

    Google Scholar 

  7. Ness N.F., Behannon K.W., Lepping R.P., Whang Y.C.: Magnetic field of Mercury confirmed. Nature 255, 204–205 (1975)

    Google Scholar 

  8. Southwood D.J.: The magnetic field of Mercury. Planet. Space Sci. 45, 113–117 (1997)

    Google Scholar 

  9. Christensen U.R.: A deep dynamo generating Mercury’s magnetic field. Nature 444, 1056–1058 (2006)

    Google Scholar 

  10. Glassmeier K.-H., Grosser J., Auster U., Constantinescu D., Narita Y., Stellmach S.: Electromagnetic induction effects and dynamo action in the Hermean system. Space Sci. Rev.s 132, 511–527 (2007)

    Google Scholar 

  11. Kivelson M.G., Khurana K.K., Russell C.T., Walker R.J., Warnecke J., Coroniti F.V., Polanskey C., Southwood D.J., Schubert G.: Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature 384, 537–541 (1996)

    Google Scholar 

  12. Hale G.E.: Astrophys. J. 28, 315–345 (1908)

    Google Scholar 

  13. Ossendrijver M.: The solar dynamo. Astron. Astrophys. Rev. 11, 287–367 (2003)

    Google Scholar 

  14. Larmor, J.: How could a rotating body such as the sun become a magnet. Rep. Br. Assoc. Adv. Sci. 159–160 (1919)

  15. Smith, S.: Søren Hjort: Inventor of the Dynamo-Electric Principle. Elektroteknisk Forening, København (1912)

  16. Braithwaite J., Spruit H.C.: A fossil origin for the magnetic field in A stars and white dwarfs. Nature 431, 819–821 (2004)

    Google Scholar 

  17. Kouveliotou C., Dieters S., Strohmayer T., van Paradijs J., Fishman G.J., Meegan C.A., Hurley K., Kommers J., Smith I., Frail D., Murakami T.: An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR1806-20. Nature 393, 235–237 (1998)

    Google Scholar 

  18. Beck R., Brandenburg A., Moss D., Shukurov A., Sokoloff D.: Galactic magnetism: recent developments and perspectives. Ann. Rev. Astron. Astrophys. 34, 155–206 (1996)

    Google Scholar 

  19. Grasso D., Rubinstein H.R.: Magnetic fields in the early Universe. Phys. Rep. 348, 163–266 (2001)

    Google Scholar 

  20. Balbus S.A., Hawley J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–53 (1998)

    Google Scholar 

  21. Hawley J.F.: Accretion disks: the magnetohydrodynamic powerhouse. Phys. Plasmas 10, 1946–1953 (2003)

    MathSciNet  Google Scholar 

  22. Shakura N.I., Sunyaev R.A.: Black holes in binary systems—observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    Google Scholar 

  23. Rayleigh L.: On the dynamics of revolving fluids. Sci. Pap. 6, 447–453 (1929)

    MathSciNet  Google Scholar 

  24. Velikhov E.P.: Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36, 995–998 (1959)

    Google Scholar 

  25. Chandrasekhar S.: The stability of non-dissipative Couette flow in hydromagnetics. Proc. Natl. Acad. Sci. 46, 253–257 (1960)

    MathSciNet  MATH  Google Scholar 

  26. Balbus S.A., Hawley J.: A powerfull local shear instability in weakly magnetized disks. 1. Linear analyis. Astrophys. J. 376, 214–222 (1991)

    Google Scholar 

  27. Kronberg P.P., Dufton Q.W., Li H., Colgate S.A.: Magnetic energy of the intergalactic medium from galactic black holes. Astrophys. J. 560, 178–186 (2001)

    Google Scholar 

  28. Morris M., Uchida K., Do T.: A magnetic torsional wave near the Galactic Centre traced by a “double helix” nebula. Nature 440, 308–310 (2006)

    Google Scholar 

  29. Shukurov A., Sokoloff D.D.: Hydromagnetic dynamo in astrophysical jets. In: Krause, F., Rädler, K.-H., Rüdiger, G. (eds) The Cosmic Dynamo, pp. 367–371. Springer, Berlin (1993)

    Google Scholar 

  30. Govoni F., Feretti L.: Magnetic fields in clusters of galaxies. Int. J. Mod. Phys. D 13, 1549–1594 (2004)

    MATH  Google Scholar 

  31. Schekochihin A.A., Iskakov A.B., Cowley S.C., McWilliams J.C., Proctor M.R.E., Yousef T.A.: Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers. New J. Phys. 9, 3000 (2007)

    Google Scholar 

  32. Cowling T.G.: The magnetic field of sunspots. Mon. Notices R. Astron. Soc. 140, 39–48 (1934)

    Google Scholar 

  33. Roberts P.H.: Fundamentals of dynamo theory. In: Proctor, M.R.E., Gilbert, A.D. (eds) Lectures on Solar and Planetary Dynamos, pp. 1–58. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  34. Stefani F., Gailitis A., Gerbeth G.: Magnetohydrodynamic experiments on cosmic magnetic fields. ZAMM 88, 930–954 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Moffatt H.K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  36. Krause F., Rädler K.-H.: Mean-Field Magnetohydrodynamics and Dynamo Theory. Akademie, Berlin (1980)

    MATH  Google Scholar 

  37. Roberts P.H., Soward A.M.: Dynamo theory. Ann. Rev. Fluid Mech. 24, 459–512 (1992)

    MathSciNet  Google Scholar 

  38. Childress S., Gilbert A.D.: Stretch, Twist, Fold: The Fast Dynamo. Springer, Berlin (1995)

    MATH  Google Scholar 

  39. Fearn D.R.: Hydromagnetic flow in planetary cores. Rep. Prog. Phys. 61, 175–235 (1998)

    Google Scholar 

  40. Roberts P.H., Glatzmaier G.A.: Geodynamo theory and simulations. Rev. Mod. Phys. 72, 1081–1123 (2000)

    Google Scholar 

  41. Busse F.H.: Homogeneous dynamos in planetary cores and in the laboratory. Annu. Rev. Fluid Mech. 31, 383–408 (2000)

    MathSciNet  Google Scholar 

  42. Busse F.H.: Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids 14, 1301–1314 (2002)

    MathSciNet  Google Scholar 

  43. Rüdiger G., Hollerbach R.: The Magnetic Universe. Wiley, Berlin (2004)

    Google Scholar 

  44. Brandenburg A., Subramanian K.: Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005)

    MathSciNet  Google Scholar 

  45. Glatzmaier G.A., Roberts P.H.: A 3-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209 (1995)

    Google Scholar 

  46. Kageyama A., Ochi M.M., Sato T.: Flip-flop transitions of the magnetic intensity and polarity reversals in the magnetohydrodynamic dynamo. Phys. Rev. Lett. 82, 5409–5412 (1999)

    Google Scholar 

  47. Kuang W., Bloxham J.: An Earth-like numerical dynamo model. Nature 389, 371–374 (1997)

    Google Scholar 

  48. Christensen U.R., Olson P., Glatzmaier G.A.: Numerical modelling of the geodynamo: a systematic parameter study. Geophys. J. Int. 138, 393–409 (1999)

    Google Scholar 

  49. Christensen U.R., Aubert J.: Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006)

    Google Scholar 

  50. Wicht J., Olson P.: A detailed study of the polarity reversal mechanism in a numerical dynamo model. Geochem. Geophys. Geosyst. 5, Q03H10 (2004)

    Google Scholar 

  51. Stellmach S., Hansen U.: Cartesian convection driven dynamos at low Ekman number. Phys. Rev. E 70, 056312 (2004)

    Google Scholar 

  52. Harder H., Hansen U.: A finite-volume solution method for thermal convection and dynamo problems in spherical shells. Geophys. J. Int. 161, 522–532 (2005)

    Google Scholar 

  53. Aubert J., Aurnou J., Wicht J.: The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int. 172, 945–956 (2008)

    Google Scholar 

  54. Stellmach S., Hansen U.: An efficient spectral method for the simulation of dynamos in Cartesian geometry and its implementation on massively parallel computers. Geochem. Geophys. Geosyst. 9, Q05003 (2008)

    Google Scholar 

  55. Stefani F., Gerbeth G.: Asymmetric polarity reversals, bimodal field distribution, and coherence resonance in a spherically symmetric mean-field dynamo model. Phys. Rev. Lett. 94, 184506 (2005)

    Google Scholar 

  56. Stefani F., Gerbeth G., Günther U., Xu M.: Why dynamos are prone to reversals. Earth Planet. Sci. Lett. 243, 828–840 (2006)

    Google Scholar 

  57. Stefani F., Xu M., Sorriso-Valvo L., Gerbeth G., Günther U.: Oscillation or rotation: a comparison of two simple reversal models. Geophys. Astrophys. Fluid Dyn. 101, 227–248 (2007)

    MathSciNet  Google Scholar 

  58. Fischer M., Stefani F., Gerbeth G.: Coexisting stochastic and coherence resonance in a mean-field dynamo model for Earth’s magnetic field reversals. Eur. Phys. J. B 65, 547–554 (2008)

    Google Scholar 

  59. Fischer M., Gerbeth G., Giesecke A., Stefani F.: Inferring basic parameters of the geodynamo from sequences of polarity reversals. Inverse Probl. 25(6), 065011 (2009)

    MathSciNet  Google Scholar 

  60. Hoyng P., Duistermaat J.J.: Geomagnetic reversals and the stochastic exit problem. Europhys. Lett. 68, 177–183 (2004)

    MathSciNet  Google Scholar 

  61. Giesecke A., Rüdiger G., Elstner D.: Oscillating α2-dynamos and the reversal phenomenon of the global geodynamo. Astron. Nachr. 326, 693–700 (2005)

    MATH  Google Scholar 

  62. Petrelis F., Fauve S., Dormy E., Valet J.-P.: Simple mechanism for reversals of Earth’s magnetic field. Phys. Rev. Lett. 102, 144503 (2009)

    Google Scholar 

  63. Roberts P.H., Jensen T.H.: Homogeneous dynamos: theory and practice. Phys. Fluids B 7, 2657–2662 (1993)

    MathSciNet  Google Scholar 

  64. Tilgner A.: Towards experimental fluid dynamos. Phys. Earth Planet. Int. 117, 171–177 (2000)

    Google Scholar 

  65. Gailitis A., Lielausis O., Platacis E., Gerbeth G., Stefani F.: Laboratory experiments on hydromagnetic dynamos. Rev. Mod. Phys. 74, 973–990 (2002)

    Google Scholar 

  66. Gailitis A., Lielausis O., Gerbeth G., Platacis E., Stefani F.: The Riga dynamo experiment. Surv. Geopyhs. 24, 247–267 (2003)

    Google Scholar 

  67. Petrelis F., Mordant N., Fauve S.: On the magnetic fields generated by experimental dynamos. Geophys. Astrophys. Fluid Dyn. 101, 289–323 (2007)

    MathSciNet  Google Scholar 

  68. Gailitis A., Lielausis O., Gerbeth G., Stefani F.: Dynamo experiments. In: Molokov, S., Moreau, R., Moffatt, H.K. (eds) Magnetohydrodynamics: Historical Evolution and Trends, pp. 37–54. Springer, Dordrecht (2007)

    Google Scholar 

  69. Lehnert B.: An experiment on axisymmetric flow of liquid sodium in a magnetic field. Arkiv för Fysik 13(10), 109–116 (1957)

    Google Scholar 

  70. Gans R.F.: On hydromagnetic precession in a cylinder. J. Fluid Mech. 45, 111–130 (1971)

    MATH  Google Scholar 

  71. Gekelman W.: Review of laboratory experiments on Alfven waves and their relationship to space observations. J. Geophys. Res. 104, 14417–14435 (1999)

    Google Scholar 

  72. Steenbeck M., Kirko I.M., Gailitis A., Klawina A.P., Krause F., Laumanis I.J., Lielausis O.A.: Der experimentelle Nachweis einer elektromtorischen Kraft längs eines äuß eren Magnetfeldes, induziert durch die Strömung flüssigen Metalls (α-Effekt). Mber. Dt. Ak. Wiss 9, 714–719 (1967)

    Google Scholar 

  73. Bevir M.K.: Possibility of electromagnetic self-excitation in liquid metal flows in fast reactors. J. Br. Nucl. Energy Soc. 12, 455–458 (1973)

    Google Scholar 

  74. Pierson E.S.: Electromagnetic self-excitation in the liquid-metal fast breeder reactor. Nucl. Sci. Eng. 57, 155–163 (1975)

    Google Scholar 

  75. Kirko I.M., Kirko G.E., Sheinkman A.G., Telichko M.T.: On the existence of thermoelectric currents in the BN-600 reactor of the Beloyarsk atomic power plant. Dokl. Akad. Nauk. SSSR 266, 854–856 (1982)

    Google Scholar 

  76. Alemany A., Marty Ph., Plunian F., Soto J.: Experimental investigation of dynamo effect in the secondary pumps of the fast breeder reactor Superphenix. J. Fluid Mech. 403, 262–276 (2000)

    Google Scholar 

  77. Lowes F.J., Wilkinson I.: Geomagnetic dynamo: a laboratory model. Nature 198, 1158–1160 (1963)

    Google Scholar 

  78. Lowes F.J., Wilkinson I.: Geomagnetic dynamo: an improved laboratory model. Nature 219, 717–718 (1968)

    Google Scholar 

  79. Wilkonson I.: The contributions of laboratory dynamo experiments to the understanding of the mechanism of generation of planetary magnetic fields. Geophys. Surv. 7, 107–122 (1984)

    Google Scholar 

  80. Herzenberg A.: Geomagnetic dynamos. Philos. Trans. R. Soc. Lond. A 250, 543–585 (1958)

    MathSciNet  Google Scholar 

  81. Gailitis A.K. et al.: Experiment with a liquid-metal model of an MHD dynamo. Magnetohydrodynamics 23, 349–353 (1987)

    Google Scholar 

  82. Ponomarenko Yu.B.: On the theory of hydromagnetic dynamos. J. Appl. Mech. Tech. Phys. 14, 775–779 (1973)

    Google Scholar 

  83. Solovyev A.A.: Existence of a magnetic dynamo for a dynamically admissible motion of a conducting fluid. Dokl. Akad. Nauk SSSR 282, 44–48 (1985)

    MathSciNet  Google Scholar 

  84. Solovyev A.A.: Magnetic field excitation by conducting fluid flow at high magnetic Reynolds numbers. Izv. Akad. Nauk SSSR Fiz. Zemli 5, 77–80 (1987)

    Google Scholar 

  85. Gailitis A., Freibergs Ya.: Theory of a helical MHD dynamo. Magnetohydrodynamics 12, 127–129 (1976)

    Google Scholar 

  86. Gailitis A., Freibergs Ya.: Nonuniform model of a helical dynamo. Magnetohydrodynamics 16, 116–121 (1980)

    Google Scholar 

  87. Gailitis A. et al.: Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett. 84, 4365–4368 (2000)

    Google Scholar 

  88. Gailitis A. et al.: Magnetic Field saturation in the Riga dynamo experiment. Phys. Rev. Lett. 86, 3024–3027 (2001)

    Google Scholar 

  89. Gailitis A., Lielausis O., Platacis E., Gerbeth G., Stefani F.: On the results of the Riga dynamo experiments. Magnetohydrodynamics 37(1/2), 71–79 (2001)

    Google Scholar 

  90. Gailitis A. et al.: Dynamo experiments at the Riga sodium facility. Magnetohydrodynamics 38, 5–14 (2002)

    Google Scholar 

  91. Gailitis A., Lielausis O., Gerbeth G., Platacis E., Stefani F.: On back-reaction effects in the Riga dynamo experiment. Magnetohydrodynamics 38, 15–26 (2002)

    Google Scholar 

  92. Gailitis A., Lielausis O., Platacis E., Gerbeth G., Stefani F.: Riga dynamo experiment and its theoretical background. Phys. Plasmas 11, 2838–2843 (2004)

    MathSciNet  Google Scholar 

  93. Gailitis A., Gerbeth G., Gundrum Th., Lielausis O., Platacis E., Stefani F.: History and results of the Riga dynamo experiment. C. R. Phys. 9, 721–728 (2008)

    Google Scholar 

  94. Gailitis A.: Self-excitation conditions for a laboratory model of a geomagnetic dynamo. Magnetohydrodynamics 3(3), 23–29 (1967)

    Google Scholar 

  95. Roberts G.O.: Dynamo action of fluid motions with two-dimensional periodicity. Philos. Trans. R. Soc. Lond. A 271, 411–454 (1972)

    MATH  Google Scholar 

  96. Busse F.H.: A model of the geodynamo. Geophys. J. R. Astr. Soc. 42, 437–459 (1975)

    MATH  Google Scholar 

  97. Stieglitz R., Müller U.: Experimental demonstration of a homogeneous two-scale dynamo. Phys. Fluids 13, 561–564 (2001)

    Google Scholar 

  98. Müller U., Stieglitz R.: The Karlsruhe dynamo experiment. Nonlinear Proc. Geophys. 9, 165–170 (2002)

    Article  Google Scholar 

  99. Müller U., Stieglitz R., Horanyi S.: A two-scale hydromagnetic dynamo experiment. J. Fluid Mech. 498, 31–71 (2004)

    MathSciNet  MATH  Google Scholar 

  100. Müller U., Stieglitz R., Horanyi S.: Complementary experiments at the Karlsruhe dynamo test facility. J. Fluid Mech. 552, 419–440 (2006)

    MATH  Google Scholar 

  101. Dudley M.L., James R.W.: Time-dependent kinematic dynamos with stationary flows. Proc. R. Soc. Lond. A 425, 407–429 (1989)

    MathSciNet  Google Scholar 

  102. Nakajima T., Kono M.: Kinematic dynamos associated with large scale fluid motions. Geophys. Astrophys. Fluid Dyn. 60, 177–209 (1991)

    Google Scholar 

  103. Monchaux R. et al.: Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 98, 044502 (2007)

    Google Scholar 

  104. Berhanu M. et al.: Magnetic field reversals in an experimental turbulent dynamo. Europhys. Lett. 77, 59001 (2007)

    Google Scholar 

  105. Forest C.B. et al.: Hydrodynamic and numerical modeling of a spherical homogeneous dynamo experiment. Magnetohydrodynamics 38, 107–120 (2002)

    Google Scholar 

  106. Spence E.J., Nornberg M.D., Jacobson C.M., Kendrick R.D., Forest C.B.: Observation of a turbulence-induced large scale magnetic field. Phys. Rev. Lett. 96, 055002 (2006)

    Google Scholar 

  107. Spence E.J. et al.: Turbulent diamagnetism in flowing liquid sodium. Phys. Rev. Lett. 98, 164503 (2007)

    Google Scholar 

  108. Forest C.B.: A plasma dynamo experiment based upon ring cusp confinement and electrostatic stirring. Bull. Am. Phys. Soc. 52(11), BP8.00114 (2007)

    Google Scholar 

  109. Frick P., Noskov V., Denisov S., Khripchenko S., Sokoloff D., Stepanov R., Sukhanovsky A.: Non-stationary screw flow in a toroidal channel: way to a laboratory dynamo experiment. Magnetohydrodynamics 38, 143–162 (2002)

    Google Scholar 

  110. Dobler W., Frick P., Stepanov R.: Screw dynamo in a time-dependent pipe flow. Phys. Rev. E 67, 056309 (2003)

    MathSciNet  Google Scholar 

  111. Stepanov R., Volk R., Denisov S., Frick P., Noskov V., Pinton J.-F.: Induction, helicity, and alpha effect in a toroidal screw flow of liquid gallium. Phys. Rev. E 73, 046310 (2006)

    Google Scholar 

  112. Denisov S.A., Noskov V.I., Stepanov R.A., Frick P.G.: Measurements of turbulent magnetic diffusivity in a liquid-gallium flow. JETP Lett. 88, 167–171 (2008)

    Google Scholar 

  113. Peffley N.L., Cawthorne A.B., Lathrop D.P.: Toward a self-generating magnetic dynamo: the role of turbulence. Phys. Rev. E 61, 5287–5294 (2000)

    Google Scholar 

  114. Peffley N.L., Goumilevski A.G., Cawthorne A.B., Lathrop D.B.: Characterization of experimental dynamos. Geophys. J. Int. 141, 52–58 (2000)

    Google Scholar 

  115. Lathrop D.B., Shew W.L., Sisan D.R.: Laboratory experiments on the transition to MHD dynamos. Plasma Phys. Contr. Fusion 43, A151–A160 (2001)

    Google Scholar 

  116. Sisan D.R., Shew W.L., Lathrop D.: Lorentz force effects in magneto-turbulence. Phys. Earth Planet. Int. 135, 137–159 (2003)

    Google Scholar 

  117. Sisan D.R., Mujica N., Tillotson W.A., Huang Y.M., Dorland W., Hassam A.B., Antonsen T.M., Lathrop D.P.: Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93, 114502 (2004)

    Google Scholar 

  118. Shew W.L., Lathrop D.P.: Liquid sodium model of geophysical core convection. Phys. Earth Planet. Int. 153, 136–149 (2005)

    Google Scholar 

  119. Liu J.T.C.: Coherent structures in transitional and turbulent free shear flows. Ann. Rev. Fluid Mech. 21, 285–315 (1988)

    Google Scholar 

  120. Nataf H.-C., Alboussiere T., Brito D., Cardin P., Gagniere N., Jault D., Masson J.-P., Schmidt D.: Experimental study of super-rotation in a magnetostrophic spherical Couette flow. Geophys. Astrophys. Fluid Dyn. 100, 281–298 (2006)

    Google Scholar 

  121. Dormy E., Cardin Ph., Jault D.: MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett. 160, 15–30 (1998)

    Google Scholar 

  122. Schmitt D., Alboussiere T., Brito D., Cardin P., Gagniere N., Jault D., Nataf H.-C.: Rotating spherical Couette flow in a dipolar magnetic field: experimental study of magneto-inertial waves. J. Fluid Mech. 604, 175–197 (2008)

    MATH  Google Scholar 

  123. Ji H., Goodman J., Kageyama A.: Magnetorotational instability in a rotating liquid metal annulus. Mon. Notices R. Astron. Soc. 325, L1–L5 (2001)

    Google Scholar 

  124. Wendt G.: Turbulente Strömungen zwischen zwei rotierenden koaxialen Zylindern. Ing. Arch. 4, 577–595 (1933)

    Google Scholar 

  125. Schultz-Grunow F.: On the stability of Couette flow. ZAMM 39, 101–110 (1959)

    MATH  Google Scholar 

  126. Dubrulle B., Dauchot O., Daviaud F., Longaretti P.Y., Richard D., Zahn J.P.: Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103 (2005)

    Google Scholar 

  127. Ji H., Burin M., Schartman E., Goodman J.: Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343–346 (2006)

    Google Scholar 

  128. Liu W.: Numerical study of the magnetorotational instability in Princeton MRI experiment. Astrophys. J. 684, 515–524 (2008)

    Google Scholar 

  129. Hollerbach R., Rüdiger G.: New type of magnetorotational instability in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 95, 124502 (2005)

    Google Scholar 

  130. Stefani F., Gundrum Th., Gerbeth G., Rüdiger G., Schultz M., Szklarski J., Hollerbach R.: Experimental evidence for magnetorotational instability in a Taylor–Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502 (2006)

    Google Scholar 

  131. Rüdiger G., Hollerbach R., Stefani F., Gundrum Th., Gerbeth G., Rosner R.: The traveling-wave MRI in cylindrical Taylor–Couette flow: comparing wavelengths and speeds in theory and experiment. Astrophys. J. 649, L145–L147 (2006)

    Google Scholar 

  132. Stefani F., Gundrum Th., Gerbeth G., Rüdiger G., Szklarski J., Hollerbach R.: Experiments on the magnetorotational instability in helical magnetic fields. New J. Phys. 9, 295 (2007)

    Google Scholar 

  133. Stefani F., Gerbeth G., Gundrum Th., Szklarski J., Rüdiger G., Hollerbach R.: Results of a modified PROMISE experiment. Astron. Nachr. 329, 652–658 (2008)

    Google Scholar 

  134. Szklarski J., Gerbeth G.: Boundary layer in the MRI experiment PROMISE. Astron. Nachr. 329, 667–674 (2008)

    Google Scholar 

  135. Szklarski J., Rüdiger G.: The Ekman–Hartmann layer in MHD Taylor–Couette flow. Phys. Rev. E 76, 066308 (2007)

    MathSciNet  Google Scholar 

  136. Stefani, F., Gerbeth, G., Gundrum, Th., Szklarski, J., Rüdiger, G., Hollerbach, R.: Liquid metal experiments on the helical magnetorotational instability. Magnetohydrodynamics (2009, in press), arXiv:0812.3790

  137. Stefani, F., Gerbeth, G., Gundrum, Th., Hollerbach, R., Priede, J., Rüdiger, G., Szklarski, J.: Helical magnetorotational instability in a Taylor–Couette flow with strongly reduced Ekman pumping. Phys. Rev. E (2009, submitted), arXiv:0904.1027

  138. Liu W.: Noise-sustained convective instability in a magnetized Taylor–Couette flow. Astrophys. J. 692, 998–1003 (2009)

    Google Scholar 

  139. Rincon F., Ogilvie G.I., Proctor M.R.E.: Self-sustaining nonlinear dynamo process in Keplerian shear flows. Phys. Rev. Lett. 98, 254502 (2007)

    Google Scholar 

  140. Roberts P.H.: An Introduction to Magnetohydrodynamics. Elsevier, New York (1967)

    Google Scholar 

  141. Müller U., Bühler L.: Magnetofluiddynamics in Channels and Containers. Springer, Berlin (2001)

    Google Scholar 

  142. Priede J., Grants I., Gerbeth G.: Inductionless magnetorotational instability in a Taylor-Green flow with a helical magnetic field. Phys. Rev. E 75, 047303 (2007)

    Google Scholar 

  143. Priede J., Gerbeth G.: Absolute versus convective helical magnetorotational instability in a Taylor–Couette flow. Phys. Rev. E 79, 046310 (2009)

    MathSciNet  Google Scholar 

  144. Steenbeck M., Krause F., Rädler K.-H.: Berechnung der mittleren Lorentz-Feldstärke \({\overline{v \times b} }\) für ein elektrisch leitendendes Medium in turbulenter, durch Coriolis-Kräfte beeinfluß ter Bewegung. Z. Nat. 21, 369–376 (1966)

    Google Scholar 

  145. Parker E.N.: Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955)

    MathSciNet  Google Scholar 

  146. Sano T., Miyama S.M.: Magnetorotational instability in protoplanetary disks. I. On the global stability of weakly ionized disks with ohmic dissipation. Astrophys. J. 515, 776–786 (1999)

    Google Scholar 

  147. Liu W., Goodman J., Herron I., Ji H.: Helical magnetorotational instability in magnetized Taylor–Couette flow. Phys. Rev. E 74, 056302 (2006)

    MathSciNet  Google Scholar 

  148. Rüdiger G., Hollerbach R.: Comment on “Helical magnetorotational instability in magnetized Taylor–Couette flow”. Phys. Rev. E 76, 068301 (2007)

    MathSciNet  Google Scholar 

  149. Stefani F., Gerbeth G., Gailitis A.: Velocity profile optimization for the Riga dynamo experiment. In: Alemany, A., Marty, Ph., Thibault, J.-P. (eds) Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows, pp. 31–44. Kluwer, Dordrecht (1999)

    Google Scholar 

  150. Gailitis A.: Design of a liquid sodium MHD dynamo experiment. Magnetohydrodynamics 2, 58–62 (1996)

    Google Scholar 

  151. Rüdiger G., Schultz M., Shalybkov D.: Linear magnetohydrodynamic Taylor–Couette instability for liquid sodium. Phys. Rev. E 67, 046312 (2003)

    Google Scholar 

  152. Stefani, F., Gerbeth, G.: MRI in Taylor–Dean flows. In: Bonanno, A., Rosner, R., Rüdiger, G. (eds.) MHD Couette Flows. Experiments and Methods, pp. 100–113, AIP Conference Proceedings 733 (2004)

  153. Bullard E., Gellman H.: Homogenous dynamos and terrestrial magnetism. Philos. Trans. R. Soc. Lond. A 247, 213–278 (1954)

    MathSciNet  MATH  Google Scholar 

  154. Tilgner A.: A kinematic dynamo with a small scale velocity field. Phys. Lett. A 226, 75–79 (1997)

    Google Scholar 

  155. Tilgner A.: Numerical simulation of the onset of dynamo action in an experimental two-scale dynamo. Phys. Fluids 14, 4092–4094 (2002)

    Google Scholar 

  156. Gissinger C., Dormy E., Fauve S.: Bypassing Cowling’s theorem in axisymmetric fluid dynamos. Phys. Rev. Lett. 101, 144502 (2008)

    Google Scholar 

  157. Rädler K.-H., Rheinhardt M., Apstein E., Fuchs H.: On the mean-field theory of the Karlsruhe dynamo experiment. Nonl. Proc. Geophys. 9, 171–187 (2002)

    Google Scholar 

  158. Rädler K.-H., Rheinhardt M., Apstein E., Fuchs H.: On the mean-field theory of the Karlsruhe dynamo experiment. I. Kinematic theory. Magnetohydrodynamics 38, 41–71 (2002)

    Google Scholar 

  159. Guermond J.-L., Leorat J., Nore C.: A new finite element method for magneto-dynamical problems: two-dimensional results. Eur. J. Mech. B Fluids 22, 555–579 (2003)

    MathSciNet  MATH  Google Scholar 

  160. Guermond J.-L., Laguerre R., Leorat J., Nore C.: An interior penalty Galerkin method for the MHD equations in heterogeneous domains. J. Comput. Phys. 221, 349–369 (2007)

    MathSciNet  MATH  Google Scholar 

  161. Laguerre R., Nore C., Leorat J., Guermond J.-L.: Effects of conductivity jumps in the envelope of a kinematic dynamo flow. C. R. Mech. 334, 593–598 (2006)

    Google Scholar 

  162. Laguerre R., Nore C., Ribeiro A., Leorat J., Guermond J.-L., Plunian F.: Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment. Phys. Rev. Lett. 101, 104501 (2008)

    Google Scholar 

  163. Iskakov A.B., Descombes S., Dormy E.: An integro-differential formulation for magnetic induction in bounded domains: boundary element-finite volume method. J. Comput. Phys. 197, 540–554 (2004)

    MathSciNet  MATH  Google Scholar 

  164. Iskakov A.B., Dormy E.: On magnetic boundary conditions for non-spectral dynamo simulations. Geophys. Astrophys. Fluid Dyn. 99, 481–492 (2005)

    MathSciNet  Google Scholar 

  165. Giesecke A., Stefani F., Gerbeth G.: Kinematic simulation of dynamo action by a hybrid boundary-element/finite-volume method. Magnetohydrodynamics 44, 237–252 (2008)

    Google Scholar 

  166. Gissinger C., Iskakov A., Fauve S., Dormy E.: Effect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling flows. Europhys. Lett. 82, 29001 (2008)

    Google Scholar 

  167. Marié L., Normand C., Daviaud F.: Galerkin analysis of kinematic dynamos in the von Kármán geometry. Phys. Fluids 18, 017102 (2006)

    MathSciNet  Google Scholar 

  168. Meir A.J., Schmidt P.G.: A velocity-current formulation for stationary MHD flow. Appl. Math. Comput. 65, 95–109 (1994)

    MathSciNet  MATH  Google Scholar 

  169. Meir A.J., Schmidt P.G.: Analysis and numerical approximation of a stationary MHD flow problem with nonideal boundary. SIAM J. Numer. Anal. 36, 1304–1332 (1999)

    MathSciNet  MATH  Google Scholar 

  170. Bourgoin M., Odier P., Pinton J.-F., Ricard Y.: An iterative study of time independent induction effects in magnetohydrodynamics. Phys. Fluids 16, 2529–2547 (2004)

    Google Scholar 

  171. Gailitis A.: Self-excitation of a magnetic field by a pair of annular vortices. Magnetohydrodynamics 6(1), 14–17 (1970)

    Google Scholar 

  172. Dobler W., Rädler K.-H.: An integral equation approach to kinematic dynamo models. Geophys. Astrophys. Fluid Dyn. 89, 45–74 (1998)

    Google Scholar 

  173. Stefani F., Gerbeth G., Rädler K.-H.: Steady dynamos in finite domains: an integral equation approach. Astron. Nachr. 321, 65–73 (2000)

    MATH  Google Scholar 

  174. Xu M., Stefani F., Gerbeth G.: The integral equation method for a steady kinematic dynamo problem. J. Comput. Phys. 196, 102–125 (2004)

    MathSciNet  MATH  Google Scholar 

  175. Xu M., Stefani F., Gerbeth G.: Integral equation approach to time-dependent kinematic dynamos in finite domains. Phys. Rev. E 70, 056305 (2004)

    MathSciNet  Google Scholar 

  176. Stefani F., Xu M., Gerbeth G., Ravelet F., Chiffaudel A., Daviaud F., Léorat J.: Ambivalent effects of added layers on steady kinematic dynamos in cylindrical geometry: application to the VKS experiment. Eur. J. Mech. B Fluids 25, 894–908 (2006)

    MATH  Google Scholar 

  177. Xu M., Xu M., Stefani F., Gerbeth G., Plunian F.: Cylindrical anisotropic α2 dynamos. Geophys. Astrophys. Fluid Dyn. 101, 389–404 (2007)

    Google Scholar 

  178. Xu M., Stefani F., Gerbeth G.: The integral equation approach to kinematic dynamo theory and its application to dynamo experiments in cylindrical geometry. J. Comput. Phys. 227, 8130–8144 (2008)

    MathSciNet  MATH  Google Scholar 

  179. Bayliss R.A., Forest C.B., Nornberg M.D., Spence E.J., Terry P.W.: Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow. Phys. Rev. E 75, 026303 (2007)

    MathSciNet  Google Scholar 

  180. Rädler K.H., Rheinhardt M., Apstein E., Fuchs H.: On the mean-field theory of the Karlsruhe dynamo experiment. II. Back-reaction of the magnetic field on the fluid flow. Magnetohydrodynamics 38, 73–94 (2002)

    Google Scholar 

  181. Ponty Y., Politano H., Pinton J.-F.: Simulation of induction at low magnetic Prandtl number. Phys. Rev. Lett. 92, 144504 (2004)

    Google Scholar 

  182. Ponty Y., Laval J.-P., Dubrulle B., Daviaud F., Pinton J.-F.: Subcritical dynamo bifurcation in the Taylor–Green flow. Phys. Rev. Lett. 99, 224501 (2007)

    Google Scholar 

  183. Kenjereš S., Hanjalić K., Renaudier S., Stefani F., Gerbeth G., Gailitis A.: Coupled fluid-flow and magnetic-field simulation of the Riga dynamo experiment. Phys. Plasmas 13, 122308 (2006)

    Google Scholar 

  184. Kenjereš S., Hanjalić K.: Numerical simulation of a turbulent magnetic dynamo. Phys. Rev. Lett. 98, 104501 (2007)

    Google Scholar 

  185. Kenjereš S., Hanjalić K.: Numerical insights into magnetic dynamo action in a turbulent regime. New J. Phys. 9, 306 (2007)

    Google Scholar 

  186. Liu W., Goodman J., Ji H.: Simulations of magnetorotational instability in a magnetized Couette flow. Astrophys. J. 643, 306–317 (2006)

    Google Scholar 

  187. Liu W., Goodman J., Ji H.: Traveling waves in magnetized Taylor–Couette flow. Phys. Rev. E 76, 016310 (2007)

    MathSciNet  Google Scholar 

  188. Szklarski J., Rüdiger G.: Nonlinear simulations of magnetic Taylor–Couette flow with current-free helical magnetic fields. Astron. Nachr. 327, 844–849 (2006)

    MATH  Google Scholar 

  189. Szklarski J.: Reduction of boundary effects in spiral MRI experiment PROMISE. Astron. Nachr. 328, 499–506 (2007)

    Google Scholar 

  190. Giesecke, A., Stefani, F., Gerbeth, G.: Role of soft-iron impellers on the mode selection in the VKS dynamo experiment (2009, submitted). arXiv: 0907.0123v1

  191. Laguerre R., Nore C., Ribeiro A., Leorat J., Guermond J.-L., Plunian F.: Erratum: Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment. Phys. Rev. Lett. 101, 219902(E) (2008)

    Google Scholar 

  192. Vandakurov Y.V.: To the theory of stability of stars with toroidal magnetic fields. Sov. Astron. 16, 265 (1972)

    Google Scholar 

  193. Tayler R.J.: Adiabatic stability of stars conating magnetic fields. 1. Toroidal fields. Mon. Notices R. Astron. Soc. 161, 365–380 (1973)

    Google Scholar 

  194. Spruit H.C.: Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002)

    Google Scholar 

  195. Rüdiger G., Hollerbach R., Schultz M., Elstner D.: Destabilization of hydrodynamically stable rotation laws by azimuthal magnetic fields. Mon. Notices R. Astron. Soc. 377, 1481–1487 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Stefani.

Additional information

Communicated by O. Zikanov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefani, F., Giesecke, A. & Gerbeth, G. Numerical simulations of liquid metal experiments on cosmic magnetic fields. Theor. Comput. Fluid Dyn. 23, 405–429 (2009). https://doi.org/10.1007/s00162-009-0125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0125-6

Keywords

PACS

Navigation