Skip to main content
Log in

Comparison between three-dimensional linear and nonlinear tsunami generation models

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The modeling of tsunami generation is an essential phase in understanding tsunamis. For tsunamis generated by underwater earthquakes, it involves the modeling of the sea bottom motion as well as the resulting motion of the water above. A comparison between various models for three-dimensional water motion, ranging from linear theory to fully nonlinear theory, is performed. It is found that for most events the linear theory is sufficient. However, in some cases, more-sophisticated theories are needed. Moreover, it is shown that the passive approach in which the seafloor deformation is simply translated to the ocean surface is not always equivalent to the active approach in which the bottom motion is taken into account, even if the deformation is supposed to be instantaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Menahem A. and Rosenman M. (1972). Amplitude patterns of tsunami waves from submarine earthquakes. J. Geophys. Res. 77: 3097–3128

    Article  ADS  Google Scholar 

  2. Bona J.L., Colin T. and Lannes D. (2005). Long wave approximations for water waves. Arch. Rational Mech. Anal. 178: 373–410

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bona J.L., Pritchard W.G. and Scott L.R. (1981). An evaluation of a model equation for water waves. Phil. Trans. R. Soc. Lond. A 302: 457–510

    ADS  MathSciNet  Google Scholar 

  4. Dutykh, D., Dias, F.: Water waves generated by a moving bottom. In: Kundu, A. (ed.) Tsunami and nonlinear waves. Springer, Heidelberg (Geo Sc.) (2007)

  5. Dutykh D., Dias F. and Kervella Y. (2006). Linear theory of wave generation by a moving bottom. C. R. Acad. Sci. Paris, Ser. I 343: 499–504

    MATH  MathSciNet  Google Scholar 

  6. Filon L.N.G. (1928). On a quadrature formula for trigonometric integrals. Proc. R. Soc. Edinburgh 49: 38–47

    Google Scholar 

  7. Fochesato C. and Dias F. (2006). A fast method for nonlinear three-dimensional free-surface waves. Proc. R. Soc. A 462: 2715–2735

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Geist E.L., Titov V.V. and Synolakis C.E. (2006). Tsunami: wave of change. Sci. Am. 294: 56–63

    Article  Google Scholar 

  9. Ghidaglia J.-M., Kumbaro A. and Le Coq G. (1996). Une méthode volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation. C. R. Acad. Sc. Paris, Ser. I 322: 981–988

    MATH  MathSciNet  Google Scholar 

  10. Ghidaglia J.-M., Kumbaro A. and Le Coq G. (2001). On the numerical solution to two fluid models via a cell centered finite volume method. Eur. J. Mech. B/Fluids 20: 841–867

    Article  MATH  MathSciNet  Google Scholar 

  11. González F.I., Bernard E.N., Meinig C., Eble M.C., Mofjeld H.O. and Stalin S. (2005). The NTHMP tsunameter network. Nat. Hazards 35: 25–39

    Article  Google Scholar 

  12. Grilli S., Guyenne P. and Dias F. (2001). A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom. Int. J. Numer. Meth. Fluids 35: 829–867

    Article  MATH  Google Scholar 

  13. Grilli S., Vogelmann S. and Watts P. (2002). Development of a 3D numerical wave tank for modelling tsunami generation by underwater landslides. Eng. Anal. Bound. Elem. 26: 301–313

    Article  MATH  Google Scholar 

  14. Guesmia M., Heinrich P.H. and Mariotti C. (1998). Numerical simulation of the 1969 Portuguese tsunami by a finite element method. Nat. Hazards 17: 31–46

    Article  Google Scholar 

  15. Hammack J.L. (1973). A note on tsunamis: their generation and propagation in an ocean of uniform depth. J. Fluid Mech. 60: 769–799

    Article  MATH  ADS  Google Scholar 

  16. Hammack J.L. and Segur H. (1974). The Korteweg–de Vries equation and water waves. Part 2. Comparison with experiments. J. Fluid Mech 65: 289–314

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Houston, J.R., Garcia, A.W.: Type 16 flood insurance study. USACE WES Report No. H-74-3 (1974)

  18. Kajiura K. (1963). The leading wave of tsunami. Bull. Earthquake Res. Inst. Tokyo Univ. 41: 535–571

    Google Scholar 

  19. Kânoglu, K., Synolakis, C.: Initial value problem solution of nonlinear shallow water-wave equations. Phys. Rev. Lett. 97, 148501 (2006)

    Google Scholar 

  20. Kirby, J.T.: Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents. In: Lakhan, V.C. (ed.) Advances in Coastal Modelling, pp. 1–41, Elsevier, Amsterdam (2003)

  21. Kulikov E.A., Medvedev P.P. and Lappo S.S. (2005). Satellite recording of the Indian Ocean tsunami on December 26, 2004. Doklady Earth Sci. A 401: 444–448

    Google Scholar 

  22. Lay, T., Kanamori, H., Ammon, C.J., Nettles M., Ward, S.N., Aster, R.C., Beck, S.L., Bilek, S.L., Brudzinski, M.R., Butler, R., DeShon, H.R., Ekstrom, G., Satake, K., Sipkin, S.: The great Sumatra-Andaman earthquake of 26 December 2004. Science 308, 1127–1133 (2005)

    Google Scholar 

  23. LeVeque R.J. (1998). Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146: 346–365

    Article  MathSciNet  ADS  Google Scholar 

  24. Liu, P.L.-F., Liggett, J.A.: Applications of boundary elementmethods to problems of water waves. In: Banerjee PK, Shaw RP (eds.) Developments in boundary element methods, 2nd edn. Applied Science Publishers, England. Chapter 3, 37–67 (1983

  25. Nwogu O. (1993). An alternative form of the Boussinesq equations for nearshore wave propagation. Coast. Ocean Eng. 119: 618–638

    Article  Google Scholar 

  26. Okada Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 75: 1135–1154

    Google Scholar 

  27. Peregrine D.H. (1967). Long waves on a beach. J. Fluid Mech. 27: 815–827

    Article  MATH  ADS  Google Scholar 

  28. Synolakis C.E. and Bernard E.N. (2006). Tsunami science before and beyond Boxing Day 2004. Phil. Trans. R. Soc. A 364: 2231–2265

    Article  ADS  MathSciNet  Google Scholar 

  29. Titov V.V. and Synolakis C.E. (1998). Numerical modelling of tidal wave runup. J. Waterway, Port, Coastal, Ocean Eng. 124: 157–171

    Article  Google Scholar 

  30. Todorovska M.I., Hayir A. and Trifunac M.D. (2002). A note on tsunami amplitudes above submarine slides and slumps. Soil Dyn. Earthq. Eng. 22: 129–141

    Article  Google Scholar 

  31. Todorovska M.I. and Trifunac M.D. (2001). Generation of tsunamis by a slowly spreading uplift of the sea-floor. Soil Dyn. Earthq. Eng. 21: 151–167

    Article  Google Scholar 

  32. Tuck, E.O.: Models for predicting tsunami propagation. NSF Workshop on Tsunamis, California, Ed: Hwang L.S., Lee Y.K. Tetra Tech Inc., 43–109 (1979)

  33. Tuck E.O. and Hwang L.-S. (1972). Long wave generation on a sloping beach. J. Fluid Mech. 51: 449–461

    Article  MATH  ADS  Google Scholar 

  34. Ursell F. (1953). The long-wave paradox in the theory of gravity waves. Proc. Camb. Phil. Soc. 49: 685–694

    Article  MATH  MathSciNet  Google Scholar 

  35. Villeneuve M. and Savage S.B. (1993). Nonlinear, dispersive, shallow-water waves developed by a moving bed. J. Hydraulic Res. 31: 249–266

    Article  Google Scholar 

  36. Ward S.N. (2001). Landslide tsunami. J. Geophys. Res. 106: 11201–11215

    Article  ADS  Google Scholar 

  37. Wei G., Kirby J.T., Grilli S.T. and Subramanya R. (1995). A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294: 71–92

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Dias.

Additional information

Communicated by R. Grimshaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kervella, Y., Dutykh, D. & Dias, F. Comparison between three-dimensional linear and nonlinear tsunami generation models. Theor. Comput. Fluid Dyn. 21, 245–269 (2007). https://doi.org/10.1007/s00162-007-0047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-007-0047-0

Keywords

PACS

Navigation