Skip to main content
Log in

A two-scale second-moment turbulence closure based on weighted spectrum integration

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A two-scale second-moment turbulence closure has been derived based on the weighted integration of the dynamic equation for the covariance spectrum. The goal is to close the Reynolds stress equations with two additional scalar equations that provide separately the scales of the spectral energy transfer and of the turbulence energy dissipation rate. Such a model should provide better prediction of nonequilibrium turbulent flows. The derivation consists of analytical integration of the wave-number-weighted covariance spectrum using a model of the spectral equations with an assumed simple representation of the shape of the energy spectrum. The resulting closure consists of a set of three tensorial equations, one for the Reynolds stress and two for length scale tensors, the latter representing the energy containing- and dissipative eddies respectively. The trace of the two tensor-scale equations leads to a set of two scalar scale parameters. In the equilibrium limit, the model reduces to the standard second-moment single-scale closure. The approach makes it also possible to derive the scale equations in a more systematic manner as compared with the common single-scale and other multi-scale models. The performance of the model in capturing the scale dynamics is illustrated by predictions of several generic homogeneous and inhomogeneous unsteady flows, demonstrating the expected response of the two scale equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. André, J.C., Lesieur, M.: Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech. 81, 187–207 (1977)

    Google Scholar 

  2. Bertoglio, J.C., Jeandel, D.: A simplified spectral closure for inhomogeneous turbulence : application to the boundary layer. In Fifth Symposium on Turbulent Shear Flows, Cornell, Vol. 10-1 (1987)

  3. Besnard, D.C., Harlow, E.H., Rauenzahn, R.M., Zemach, C.: Spectral transport model for turbulence. Theoret. Comput. Fluid Dyn. 8(1), 1–35 (1996)

    Google Scholar 

  4. Cadiou, A., Hanjalić, K.: Development of one-point statistical closure from spectral description of the turbulence. Technical Report APTF/98-07, TU Delft (1998)

  5. Cambon, C., Jeandel, D., Mathieu, J.: Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech. 104, 247–262 (1981)

    Google Scholar 

  6. Cambon, C., Jacquin, L., Lubrano, J.L.: Toward a new Reynolds stress model for rotating turbulent flows. Phys. Fluids, Series A 4(4), 812–824 (1991)

    Google Scholar 

  7. Cambon, C., Jacquin, L., Lubrano, J.L.: Toward a new Reynolds stress model for rotating turbulent flows. Phys. Fluids, Series A 4(4), 812–824 (1992)

    Google Scholar 

  8. Cambon, C.: Modélisation spectrale en turbulence homogène anisotrope. PhD thesis, Lyon I (1979)

  9. Cambon, C.: Etude Spectrale d’un Champ Turbulent Incompressible, soumis a des Effets couplés de Déformation et de Rotation, imposés exterieurement. PhD thesis, Lyon I (1982)

  10. Clark, T.T., Zemach, C.: A spectral model applied to homogeneous turbulence. Phys. Fluids 7(7), 1674–1694 (1995)

    Google Scholar 

  11. Crow, S.C.: Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mech. 33(1), 1–15 (1968)

    Google Scholar 

  12. Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 23(11), 2634–2649 (1970)

    Google Scholar 

  13. Donaldson, CduP., Sandri, G.: On the inclusion of information on eddy structure in second order closure models of turbulent flows. In AGARD, Vol. 308, pp. 25.1–25.14. (1981)

  14. Duncan, B.S., Liou, W.W., Shih, T.H.: A multiple-scale turbulent model for incompressible flow. Technical Report 93-1, ICASE (1993)

  15. Durbin, P.A.: Near-wall turbulence modeling without damping functions. Theoret. Comput. Fluid Dyn. 3, 1–13 (1991)

    Google Scholar 

  16. Gence, J.N., Mathieu, J.: The return to isotropy of an homogeneous turbulence having been submitted to two successive plane strains. J. Fluid Mech. 101(3), 555–566 (1980)

    Google Scholar 

  17. Hanjalić, K., Launder, B.E.: A Reynolds stress model of turbulence and its application to thin shear flow. J. Fluid Mech. 54(4), 609–638 (1972)

    Google Scholar 

  18. Hanjalić, K., Launder, B.E.: Contribution towards a Reynolds stress closure for low Reynolds number turbulence. J. Fluid Mech. 74, 593–610 (1976)

    Google Scholar 

  19. Hanjalić, K., Launder, B.E., Schiestel, R.: Multiple scale concepts in turbulent transport modelling. In Second Symposium on Turbulent Shear Flows, London, pp. 36–49 (1979)

  20. Hinze, J.O.: Turbulence. Mc Graw-Hill, 2nd edn (1975)

  21. Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 459, 139–166 (2002)

    Google Scholar 

  22. Jeandel, D., Brison, J.F., Mathieu, J.: Modeling methods in physical and spectral space. Phys. Fluids 21, 169–182 (1978)

    Google Scholar 

  23. Jovanović, J., Ye, Q.Y., Durst, F.: Statistical interpretation of the turbulent dissipation rate in wall-bounded flows. J. Fluid Mech. 293, 321–347 (1995)

    Google Scholar 

  24. Kármán, T. Von, Howarth, L.: On the statistical theory of isotropic turbulence. Proc. Roy. Soc. 164, 192–215 (1938)

  25. Kassinos, S.C., Reynolds, W.C.: A structure-based model for the rapid distorsion of homogeneous turbulence. Technical Report TF-61, Stanford University, Thermosciences Division (1995)

  26. Kida, S., Hunt, J.C.R.: Interaction between different scales of turbulence over short times. J. Fluid Mech. 201, 411–445 (1989)

    Google Scholar 

  27. Kim, S.W., Chen, C.P.: A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum. Numerical Heat Transfer 16(B), 193–211 (1988)

    Google Scholar 

  28. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Google Scholar 

  29. Kolmogorov, A.N.: Local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Doklady AN. SSSR 30, 299–303 (1941)

    Google Scholar 

  30. Kovasznay, L.S.G.: Spectrum of locally isotropic turbulence. J. Aero. Sci. 15, 745–753 (1948)

    Google Scholar 

  31. Kraichnan, R.H.: Irreversible statistical mechanics of incompressible hydromagnetic turbulence. Phys. Rev. 109, 1407–1422 (1958)

    Google Scholar 

  32. Kraichnan, R.H.: The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497–543 (1959)

    Google Scholar 

  33. Kraichnan, R.H.: Langrangian history closure approximation for turbulence. Phys. Fluids 8, 575–598 (1965)

    Google Scholar 

  34. Kraichnan, R.H.: Model for inhomogeneous turbulence. J. Fluid Mech. 56, 287–304 (1972)

    Google Scholar 

  35. Laporta, A.: Etude Spectrale et modélisation de la turbulence inhomogène. PhD thesis, Lyon I (1995)

  36. Launder, B.E., Schiestel, R.: Sur l’utilisation d’échelles temporelles multiples en modélisations des écoulements turbulents. C. R. Acad. Sc. Paris t286(A), 709–712 (1978)

    Google Scholar 

  37. Leith, C.E.: Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids 10(7), 1409–1416 (1967)

    Google Scholar 

  38. Leith, C.E.: Atmospheric predictability and two-dimensional turbulence. J. Atmosph. 28, 145–161 (1971)

    Google Scholar 

  39. Lin, A., Wolfshtein, M.: Tensorial volume of turbulence. Phys. Fluids 23(3), 644–646 (1980)

    Google Scholar 

  40. Lyn, D. A., Rodi, W.: The flapping shear layer founded by flow separation from the forward corner of a square cylinder. J. Fluid Mech. 267, 353–376 (1994)

    Google Scholar 

  41. Lyn, D.A., Einev, S., Rodi, W., Park, J.-H.: A laser-doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304, 285–319 (1995)

    Google Scholar 

  42. Mellor, G.L., Yamada, T.: Development of a turbulent closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics20(4), 851–875 (1982)

    Google Scholar 

  43. Millionschtchikov, M.D.: On the theory of homogeneous isotropic turbulence. C. R. Acad. Sc. URSS 32(615), (1941)

  44. Nagano, Y., Kondoh, M., Shimada, M.: Multiple time-scale turbulence model for wall and homogeneous shear flows based on direct numerical simulations. Int. J. Heat and Fluid Flow 18, 346–359 (1997)

    Google Scholar 

  45. Naot, D., Shavit, A., Wolfsthein, M.: Two-point correlation model and the redistribution of Reynolds stresses. Phys. Fluids 16, 738–743 (1973)

    Google Scholar 

  46. Ng, K.H., Spalding, D.B.: Turbulence model for boundary layers near walls. Phys. Fluids 15(1), 20–30 (1972)

    Google Scholar 

  47. Oberlack, M., Peters, N.: Closure of the dissipation tensor equation and the pressure velocity correlation based on the two-point correlation equation. In Ninth Symposium on Turbulent Shear Flows, Tokyo, Vol. 23-3, pp. 1–6 (1993)

  48. Oberlack, M.: Herleitung und Lösung einer Längenmass und Dissipationstensorgleichung für turbulente Strömungen. PhD thesis, Köln (1994)

  49. Oberlack, M.: Non-isotropic dissipation in non-homogeneous turbulence. J. Fluid Mech. 350, 351–374 (1997)

    Google Scholar 

  50. O’Brien, E.E., Francis, G.C.: A consequence of zero fourth cumulant approximation. J. Fluid Mech. 13, 369–382 (1962)

    Google Scholar 

  51. Ogura, Y.: A consequence of zero fourth cumulant approximation in the decay of isotropic turbulence. J. Fluid Mech. 16, 33–40 (1963)

    Google Scholar 

  52. Orszag, S.A.: Analytical theory of turbulence. J. Fluid Mech. 41, 363–386 (1970)

    Google Scholar 

  53. Pouquet, A., Lesieur, M., André, J.C., Basdevant, C.: Evolution of high Reynolds number two-dimensionnal turbulence. J. Fluid Mech. 72, 305–319 (1975)

    Google Scholar 

  54. Rotta, J.C.: Statistische Theorie nichthomogener Turbulenz. ZAMM 5, 136–139 (1951)

  55. Schiestel, R.: Sur le concept d’échelles multiples en modélisation des écoulements turbulents. 1. schéma multi-échelles pour l’énergie cinétique de la turbulence et la variance d’un scalaire passif. Journal de Mécanique théorique et appliquée 2(3), 417–449 (1983)

    Google Scholar 

  56. Schiestel, R.: Multiple time scale modeling of turbulent flows in one point closures. Phys. Fluids 30(3), 722–731 (1987)

    Google Scholar 

  57. Schiestel, R.: Modélisation et simulation des écoulements turbulents. Hermès (1993)

  58. Speziale, C.G., Gatski, T.B.: Analysis and model for the dissipation components of reynolds stresses. J. Fluid Mech. 1, 1–1 (1997)

    Google Scholar 

  59. Stawiarski, K., Hanjalić, K.: On physical constraints for multi-scale turbulence closure models. Progress in CFD (to appear) (2004)

  60. Stawiarski, K.: Multiple-scale closures for non-equilibrium turbulent flows. PhD thesis, Technische Universiteit Delft (2003)

  61. Steinkamp, M.J., Clark, T.T., Harlow, F.H.: Stochastic interpenetration of fluids. Technical Report LA-13016-MS, Los Alamos, New Mexico (1995)

  62. Tennekes, H., Lumley, J.L.: A first Course in Turbulence. MIT Press (1972)

  63. Uberoi, M.S.: Effect of wind tunnel contraction on free-stream turbulence. Journ Aero. Sci. 23, 754–758 (1956)

    Google Scholar 

  64. Umlauf, L., Burchard, H.: A generic length-scale equation for geophysical turbulence models. J. Mar. Res. 60, 699–723 (2003)

    Google Scholar 

  65. Wilcox, D.C.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal 26, 1299–1310 (1988)

    Google Scholar 

  66. Yoshioka, S., Obi, S., Masuda, S.: Periodically perturbed separated flow over a backward-facing step. In: 9th ERCOFTAC Workshop on Refined Turbulence Modelling, Vol. 1 (2001)

  67. Yoshizawa, A.: A statistical investigation of transport equation for energy dissipation in shear turbulence. Journ. of the Phys. Soc. of Japan 51(6), 1983–1991 (1982)

  68. Yoshizawa, A.: Statistical analysis of the derivation of the Reynolds stress from its eddy-viscosity representation. Phys. Fluids 27, 1377–1387 (1984)

    Google Scholar 

  69. Yoshizawa, A.: Statistical modeling of a transport equation for the kinetic energy dissipation rate. Phys. Fluids 30(3), 628–631 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hanjalić.

Additional information

Communicated by

T.B. Gatski

PACS

03.50.De, 04.20-q, 42.65-k

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadiou, A., Hanjalić, K. & Stawiarski, K. A two-scale second-moment turbulence closure based on weighted spectrum integration. Theoret Comput Fluid Dynamics 18, 1–26 (2004). https://doi.org/10.1007/s00162-004-0118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-004-0118-4

Keywords

Navigation