Skip to main content
Log in

Flow Bifurcations in a Thin Gap Between Two Rotating Spheres

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract.

This paper presents the use of a parameter continuation method and a test function to solve the steady, axisymmetric incompressible Navier–Stokes equations for spherical Couette flow in a thin gap between two concentric, differentially rotating spheres. The study focuses principally on the prediction of multiple steady flow patterns and the construction of bifurcation diagrams. Linear stability analysis is conducted to determine whether or not the computed steady flow solutions are stable. In the case of a rotating inner sphere and a stationary outer sphere, a new unstable solution branch with two asymmetric vortex pairs is identified near the point of a symmetry-breaking pitchfork bifurcation which occurs at a Reynolds number equal to 789. This solution transforms smoothly into an unstable asymmetric 1-vortex solution as the Reynolds number increases. Another new pair of unstable 2-vortex flow modes whose solution branches are unconnected to previously known branches is calculated by the present two-parameter continuation method. In the case of two rotating spheres, the range of existence in the (Re 1 , Re 2 ) plane of the one and two vortex states, the vortex sizes as a function of both Reynolds numbers are identified. Bifurcation theory is used to discuss the origin of the calculated flow modes. Parameter continuation indicates that the stable states are accompanied by certain unstable states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Author information

Authors and Affiliations

Authors

Additional information

Received 26 November 2001 and accepted 10 May 2002 Published online 30 October 2002

Communicated by M.Y. Hussaini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, RJ., Luo, WJ. Flow Bifurcations in a Thin Gap Between Two Rotating Spheres. Theoret Comput Fluid Dynamics 16, 115–131 (2002). https://doi.org/10.1007/s00162-002-0073-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-002-0073-x

Navigation