Skip to main content
Log in

A two-temperature generalized magneto-thermoelastic formulation for a rotating medium with thermal shock under hydrostatic initial stress

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

A Correction to this article was published on 03 November 2020

This article has been updated

Abstract

The interaction between magnetic field and thermal field in an elastic half-space, homogeneous and isotropic under two temperature and initial stress are investigated using a normal mode method in the framework of the Lord–Şhulman theory, with thermal shock and rotation. The medium rotates with a uniform angular velocity, and it is considered to be permeated by a uniform magnetic field and hydrostatic initial stress. The general solution we obtain is finally applied to a specific problem. The variations in temperature, the dynamical temperature, the stress and the strain distributions through the horizontal distance are calculated by an appropriate numerical example and graphically illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 03 November 2020

    Unfortunately, the original version of the article contained error in the below equation terms.

Abbreviations

\(\delta _{{ij}}\) :

Kronecker delta function

\(\alpha _{t}\) :

Coefficient of linear thermal expansion

T :

Absolute temperature

\(T_0\) :

Reference temperature chosen so that \(\left| {\frac{T-T_0 }{T_0 }} \right| <1\)

\(\phi =\phi _0 -{T}\) :

Conductive temperature

\(\eta \) :

Hydrostatic initial stress

\(\lambda , \mu \) :

Lame’s constants

\(\mu _0\) :

Magnetic permeability

\(\theta ={T}-{T}_0\) :

Thermodynamical temperature

\(\rho \) :

Density of the medium

\(\sigma _{{ij}}\) :

Components of the stress tensor

\(\tau _0\) :

Thermal relaxation time

a :

Two-temperature parameter

\({C}_{{E}}\) :

Specific heat at constant strain

e :

Cubical dilatation

\({e}_{{ij}}\) :

Components of the strain tensor

\({F}_{i}\) :

Lorentz force

K :

Thermal conductivity

P :

Initial pressure

\({u}_{i}\) :

Components of the displacement vector

\(F_{i}\) :

Lorentz body force

References

  1. Biot, M.A.: Thermoclasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermolasticity. J. Mech. Phys. Solids. 15, 299–306 (1967)

    ADS  MATH  Google Scholar 

  3. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    MATH  Google Scholar 

  4. Chandrasekharaiah, D.S., Srinath, K.S.: Thermoelastic interactions without energy dissipation due to a point heat source. J. Elast. 50, 97–108 (1998)

    MATH  Google Scholar 

  5. Chandrasekharaiah, D.S., Murthy, H.N.: Temperature-rate-dependent thermo-elastic interactions due to a line heat source. Acta. Mech. 89, 1–12 (1991)

    MATH  Google Scholar 

  6. Puri, P.: Plane waves in thermoelasticity and magneto-thermoelasticity. Int. J. Eng. Sci. 10, 467–476 (1972)

    MATH  Google Scholar 

  7. Nayfeh, A., Nemat-Nasser, S.: Transient thermoelastic waves in half-space with thermal relaxation. ZAMP 23, 52–68 (1972)

    ADS  MATH  Google Scholar 

  8. Roy Choudhuri, S.K., Mukhopdhyay, S.: Effect of rotation and relaxation on plane waves in generalized thermo-viscoelasticity. Int. J. Math. Math. Sci. 23, 479–505 (2000)

    Google Scholar 

  9. Ezzat, M.A., Othman, M.I.A.: Electromagneto-thermoelastic plane waves with two relaxation times in a medium of perfect conductivity. Int. J. Eng. Sci. 38, 107–120 (2000)

    Google Scholar 

  10. Ezzat, M., Othman, M.I.A., El-Karamany, A.S.: Electromagneto-thermoelastic plane waves with thermal relaxation in a medium of perfect conductivity. J. Therm. Stresses 24, 411–432 (2001)

    Google Scholar 

  11. Bahar, L.Y., Hetnarski, R.: State space approach to thermoelasticity. J. Therm. Stresses 1, 135–145 (1978)

    Google Scholar 

  12. Sherief, H.: State space formulation for generalized thermoelasticity with one relaxation time including heat sources. J. Therm. Stresses 16, 163–176 (1993)

    MathSciNet  Google Scholar 

  13. Sherief, H., Anwar, M.: A two dimensional generalized thermoelasticity problem for an infinitely long cylinder. J. Therm. Stresses 17, 213–227 (1994)

    Google Scholar 

  14. Youssef, H.M., El-Bary, A.A.: Mathematical model for thermal shock problem of a generalized thermoelastic layered composite material with variable thermal conductivity. Commun. Methods Sci. Technol. 12(2), 165–171 (2006)

    MATH  Google Scholar 

  15. Elsibai, K., Youssef, H.: State space formulation to the vibration of gold nano-beam induced by ramp type heating without energy dissipation in femtoseconds scale. J. Therm. Stresses 34, 244–263 (2011)

    Google Scholar 

  16. Biot, M.A.: Mechanics of Incremental Deformations. Wiley, New York, NY (1965)

    Google Scholar 

  17. Chattopadhyay, A., Bose, S., Chakraborty, M.: Reflection of elastic waves under initial stress at a free surface: P and SV motion. J. Acoust. Soc. Am. 72(1), 255–263 (1982)

    ADS  MATH  Google Scholar 

  18. Montanaro, A.: On singular surfaces in isotropic linear thermoelasticity with initial stress. J. Acoust. Soc. Am. 106(3I), 1586–1588 (1999)

    ADS  Google Scholar 

  19. Othman, M.I.A., Song, Y.: Reflection of plane waves from an elastic solid half-space under hydrostatic initial stress without energy dissipation. Int. J. Solids Struct. 44(17), 5651–5664 (2007)

    MATH  Google Scholar 

  20. Singh, B.: Effect of hydrostatic initial stresses on waves in a thermoelastic solid half-space. Appl. Math. Comput. 198(2), 494–505 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Zamp. 19, 614–627 (1968)

    ADS  MATH  Google Scholar 

  22. Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71, 383–390 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Youssef, H.M., Al-Lehaibi, E.A.: State-space approach of two-temperature generalized thermoelasticity of one-dimensional problem. Int. J. Solids Struct. 44, 1550–1562 (2007)

    MATH  Google Scholar 

  24. Youssef, H.: Problem of generalized thermoelastic infinite medium with cylindrical cavity subjected to a ramp-type heating and loading. Arch. Appl. Mech. 75, 553–565 (2006)

    ADS  MATH  Google Scholar 

  25. Schoenberg, M., Censor, D.: Elastic waves in rotating media. Quart. Appl. Math. 31, 15–125 (1973)

    MATH  Google Scholar 

  26. Puri, P.: Plane thermoelastic waves in rotating media. Bull. DeL’Acad. Polon. Des. Sci. Ser. Tech. XXIV, 103–110 (1976)

    MATH  Google Scholar 

  27. Roy Choudhuri, S.K., Debnath, L.: Magneto-thermoelastic plane waves in rotating media. Int. J. Eng. Sci. 21, 155–163 (1983a)

    MATH  Google Scholar 

  28. Roy Choudhuri, S.K., Debnath, L.: Magneto-elastic plane waves in infinite rotating media. J. Appl. Mech. 50, 283–288 (1983b)

    ADS  MATH  Google Scholar 

  29. Abouelregal, A.E., Abo-Dahab, S.M.: Dual-phase-lag diffusion model for Thomson’s phenomenon on elctromagneto-thermoelastic an infinitely long solid cylinder. J. Comput. Theor. Nanosci. 11(4), 1031–1039 (2014)

    Google Scholar 

  30. Lotfy, K., Abo-Dahab, S.M.: Two-dimensional problem of two temperature generalized thermoelasticity with normal mode analysis under thermal shock problem. J. Comput. Theor. Nanosci. 27(1), 67–91 (2017)

    MATH  Google Scholar 

  31. Roy Choudhuri, S.K., Banerjee, S.: Magneto-thermoelastic interactions in an infinite viscoelastic cylinder of temperaturerate dependent material subjected to a periodic loading. Int. J. Eng. Sci. 36(5/6), 635–643 (1998)

    Google Scholar 

  32. Abo-Dahab, S.M., Abd-Alla, A.M., Alqarni, A.J.: A two-dimensional problem in generalized thermoelasticity with rotation and magnetic field. Result Phys. 7, 2742–2751 (2017)

    ADS  Google Scholar 

  33. Abd-alla, A.E.N.N., Alshaikh, F., Del Vescovo, D., Spagnuolo, M.: Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity. J. Therm. Stresses 40(9), 1079–1092 (2017)

    Google Scholar 

  34. Abbas, I.A., Abdalla, A.E.N.N., Alzahrani, F.S., Spagnuolo, M.: Wave propagation in a generalized thermoelastic plate using eigenvalue approach. J. Therm. Stresses 39(11), 1367–1377 (2016)

    Google Scholar 

  35. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    MathSciNet  MATH  Google Scholar 

  36. dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik 63(6), 1119–1141 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Sciarra, G., dell’Isola, F., Coussy, O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007)

    MathSciNet  MATH  Google Scholar 

  38. dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

    MathSciNet  MATH  Google Scholar 

  39. dell’Isola, F., Romano, A.: On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25(11–12), 1459–1468 (1987)

    MathSciNet  MATH  Google Scholar 

  40. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  42. dell’Isola, F., Seppecher, P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)

    MathSciNet  MATH  Google Scholar 

  43. Seppecher, P., Alibert, J.J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319(1), 012018 (2011)

    Google Scholar 

  44. Seppecher, P.: Second-gradient theory: application to Cahn–Hilliard fluids. In: Continuum Thermomechanics. Springer, Dordrecht, pp. 379–388 (2000)

  45. Berezovski, A., Giorgio, I., Della Corte, A.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids 21(1), 37–51 (2016)

    MathSciNet  MATH  Google Scholar 

  46. dell’Isola, F., Giorgio, I., Andreaus, U.: Elastic pantographic 2D lattices: a numerical analysis on the static response and wave propagation. Proc. Estonian Acad. Sci. 64(3), 219 (2015)

    Google Scholar 

  47. Giorgio, I., Galantucci, L., Hamdan, A.M., Del Vescovo, D.: Wave reflection at a free interface in an anisotropic pyroelectric medium with nonclassical thermoelasticity. Contin. Mech. Thermodyn. 28(1–2), 67–84 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Laudato, M., Manzari, L., Barchiesi, E., Di Cosmo, F., Göransson, P.: First experimental observation of the dynamical behavior of a pantographic metamaterial. Mech. Res. Commun. 94, 125–127 (2018)

    Google Scholar 

  49. Barchiesi, E., Laudato, M., Di Cosmo, F.: Wave dispersion in non-linear pantographic beams. Mech. Res. Commun. 94, 128–132 (2018)

    Google Scholar 

  50. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 1081286517735695 (2018)

  51. Di Cosmo, F., Laudato, M., Spagnuolo, M.: Acoustic metamaterials based on local resonances: homogenization, optimization and applications. In: Generalized Models and Non-classical Approaches in Complex Materials, vol. 1, pp. 247–274. Springer, Cham (2018)

  52. dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Gołaszewski, M., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. 1–34 (2018)

  53. Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams. Contin. Mech. Thermodyn. 1–21 (2018)

  54. Spagnuolo, M., Andreaus, U.: A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Math. Mech. Solids 1081286517737000 (2018)

  55. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik 67(121), 1–20 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Advanced Structured Materials, vol. 59, pp. 239–258. Springer, Singapore (2017)

  57. Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol. 69, pp. 193–2110. Springer, Singapore (2017)

  58. Placidi, L., Barchiesi, E., Della Corte, A.: Identification of two-dimensional pantographic structures with a linear d4 orthotropic second gradient elastic model accounting for external bulk double forces. Mathematical Modelling in Solid Mechanics. Advanced Structured Materials, vol. 69, pp. 211–232. Springer, Singapore (2017)

  59. Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 94(12), 978–1000 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Andreaus, U., Giorgio, I., Madeo, A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Zeitschrift für angewandte Mathematik und Physik 66(1), 209–237 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016)

    Google Scholar 

  62. Giorgio, I., Andreaus, U., Lekszycki, T., Della Corte, A.: The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math. Mech. Solids 22(5), 969–987 (2017)

    MathSciNet  MATH  Google Scholar 

  63. Spagnuolo, M., Barcz, K., Pfaff, A., Dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Google Scholar 

  64. Turco, E., Misra, A., Sarikaya, R., Lekszycki, T.: Quantitative analysis of deformation mechanisms in pantographic substructures: experiments and modeling. Contin. Mech. Thermodyn. 31(1), 209–223 (2018)

    ADS  MathSciNet  Google Scholar 

  65. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3), 56 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  66. Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A 474(2210), 20170878 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex. Syst. 6(2), 77–100 (2018)

    MathSciNet  MATH  Google Scholar 

  68. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    ADS  MATH  Google Scholar 

  69. Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)

    MathSciNet  MATH  Google Scholar 

  70. Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)

    MathSciNet  MATH  Google Scholar 

  71. Pietraszkiewicz, W., Eremeyev, V., Konopińska, V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics 87(2), 150–159 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  72. Eremeyev, V., Zubov, L.: On constitutive inequalities in nonlinear theory of elastic shells. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics 87(2), 94–101 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  73. Altenbach, H., Eremeyev, V.A. (Eds.).: Shell-Like Structures: Non-classical Theories and Applications, vol. 15. Springer, New York (2011)

  74. Franciosi, P., Spagnuolo, M., Salman, O.U.: Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin. Mech. Thermodyn. 31(1), 101–132 (2018)

    ADS  MathSciNet  Google Scholar 

  75. Franciosi, P.: A Decomposition method for obtaining global mean Green operators of inclusions patterns. Application to parallel infinite beams in at least transversally isotropic media. Int. J. Solids Struct. 147(15), 1–19 (2018)

    Google Scholar 

  76. Franciosi, P., Lormand, G.: Using the radon transform to solve inclusion problems in elasticity. Int. J. Solids Struct. 41(3–4), 585–606 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Abo-Dahab.

Additional information

Communicated by Francesco dell’Isola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo-Dahab, S.M. A two-temperature generalized magneto-thermoelastic formulation for a rotating medium with thermal shock under hydrostatic initial stress. Continuum Mech. Thermodyn. 32, 883–900 (2020). https://doi.org/10.1007/s00161-019-00765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00765-3

Keywords

Navigation