Skip to main content
Log in

Seismic waves and earthquakes in a global monolithic model

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The philosophy that a single “monolithic” model can “asymptotically” replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The “monolithic-type” models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth’s layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys’ viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger’s viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Zion, Y.: Dynamic ruptures in recent models of earthquake faults. J. Mech. Phys. Solids 49, 2209–2244 (2001)

    Article  ADS  MATH  Google Scholar 

  2. Ben-Zion, Y., Ampuero, J.-P.: Seismic radiation from regions sustaining material damage. Geophys. J. Int. 178, 1351–1356 (2009)

    Article  ADS  Google Scholar 

  3. Boger, D.: A highly elastic constant-viscosity fluid. J. Non-Newton. Fluid Mech. 3, 87–91 (1977)

    Article  Google Scholar 

  4. Brazda, K.: The elastic-gravitational equations in global seismology with low regularity. Ph.D. thesis, University of Wien (2017)

  5. Brazda, K., de Hoop, M.V., Hoermann, G.: Variational formulation of the earth’s elastic-gravitational deformations under low regularity conditions (2017). arXiv:1702.04741

  6. Dahlen, F.A., Tromp, J.: Theoretical Global Seismology. Princetown University Press, Princetown (1998)

    Google Scholar 

  7. Green, A., Naghdi, P.: A general theory of an elastic–plastic continuum. Arch. Ration. Mech. Anal. 18, 251–281 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harris, R.A., et al.: The SCEC/USGS dynamic earthquake rupture code verification exercise. Seismol. Res. Lett. 80, 119–126 (2009)

    Article  Google Scholar 

  9. Huang, Y., Ampuero, J.-P., Helmberger, D.V.: Earthquake ruptures modulated by waves in damaged fault zones. J. Geophys. Res. Solid Earth B9, 3133–3154 (2014)

    Article  ADS  Google Scholar 

  10. Kaneko, Y., Lapusta, N., Ampuero, J.-P.: Spectral element modeling of spontaneous earthquake rupture on rate and state faults:effect of velocity-strengthening friction at shallow depths. J. Geophys. Res. 113, B09317 (2008)

    ADS  Google Scholar 

  11. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation- I. validation. Geophys. J. Int. 149, 390–412 (2002)

    Article  ADS  Google Scholar 

  12. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation-II. Three-dimensional models, oceans, rotation and self-gravitation. Geophys. J. Int. 150, 303–318 (2002)

    Article  ADS  Google Scholar 

  13. Koot, L., Dumberry, M.: Viscosity of the Earth’s inner core: constraints from nutation observations. Earth Planet. Sci. Lett. 308(3), 343–349 (2011)

    Article  ADS  Google Scholar 

  14. Lay, T., Wallace, T.C.: Modern Global Seismology. Academy Press, San Diego (1995)

    Google Scholar 

  15. Lyakhovsky, V., Ben-Zion, Y.: Damage-breakage rheology model and solid-granular transition near brittle instability. J. Mech. Phys. Solids 64, 184–197 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lyakhovsky, V., Hamiel, Y., Ampuero, J.-P., Ben-Zion, Y.: Non-linear damage rheology and wave resonance in rocks. Geophys. J. Int. 178, 910–920 (2009)

    Article  ADS  Google Scholar 

  17. Lyakhovsky, V., Hamiel, Y., Ben-Zion, Y.: A non-local visco-elastic damage model and dynamic fracturing. J. Mech. Phys. Solids 59, 1752–1776 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lyakhovsky, V., Myasnikov, V.P.: On the behavior of elastic cracked solid. Phys. Solid Earth 10, 71–75 (1984)

    Google Scholar 

  19. Maedae, T., Furumura, T.: FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion. Pure Appl. Geophys. 170, 109–127 (2013)

    Article  ADS  Google Scholar 

  20. Pelties, C., de la Puente, J., Ampuero, J.-P., Brietzke, G.B., Käser, M.: Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes. J. Geophys. Res. 117, B02309 (2012)

    Article  ADS  Google Scholar 

  21. Rajagopal, K.R., Roubíček, T.: On the effect of dissipation in shape-memory alloys. Nonlinear Anal. Real World Appl. 4, 581–597 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roubíček, T.: Nonlinear Partial Differential Equations with Applications, 2nd edn. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  23. Roubíček, T.: A note about the rate-and-state-dependent friction model in a thermodynamical framework of the Biot-type equation. Geophys. J. Intl. 199, 286–295 (2014)

    Article  ADS  Google Scholar 

  24. Roubíček, T.: Geophysical models of heat and fluid flow in damageable poro-elastic continua. Contin. Mech. Thermodyn. 29, 625–646 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Roubíček, T., Panagiotopoulos, C.G., Mantič, V.: Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity. Z. Angew. Math. Mech. 93, 823–840 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Roubíček, T., Souček, O., Vodička, R.: A model of rupturing lithospheric faults with re-occurring earthquakes. SIAM J. Appl. Math. 73, 1460–1488 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Roubíček, T., Vodička, R.: A monolithic model for seismic sources and seismic waves. Geophys. J. Int. (submitted)

  28. Secco, R.A.: Viscosity of the outer core. In: Ahrens, T. (ed.) Mineral Physics and Crystallography: A Handbook of Physical Constants, pp. 218–226. Willey, Hoboken (2013)

    Google Scholar 

  29. Smylie, D.E., Palmer, A.: Viscosity of Earth’s outer core (2007). arXiv:0709.3333

  30. Tosi, N., Čadek, O., Martinec, Z.: Subducted slabs and lateral viscosity variations: effects on the long-wavelength geoid. Geophys. J. Int. 179, 813–826 (2009)

    Article  ADS  Google Scholar 

  31. Tsai, V., Ampuero, J.-P., Kanamori, H., Stevenson, D.: Estimating the effect of Earth elasticity and variable water density on tsunami speeds. Geophys. Res. Letters 40, 492–496 (2013)

    Article  ADS  Google Scholar 

  32. Wijs, G.A.D., Kresse, G., Vočadlo, L., Dobson, D., Alfé, D., Gillan, M.J., Price, G.D.: The viscosity of liquid iron at the physical conditions of the Earth’s core. Nature 392(6678), 805–807 (1998)

    Article  ADS  Google Scholar 

  33. Woodhouse, J.H., Deuss, A.: Theory and observations-Earth’s free oscillations. In: Romanowicz, B., Dziewonski, A. (eds.) Seismology and Structure of the Earth: Treatise on Geophysics, volume 1, chapter 1.02, pp. 31–65. Elsevier, Hoboken (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Roubíček.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roubíček, T. Seismic waves and earthquakes in a global monolithic model. Continuum Mech. Thermodyn. 30, 709–729 (2018). https://doi.org/10.1007/s00161-018-0636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0636-8

Keywords

Navigation