Skip to main content
Log in

Mechanical characterization of a short fiber-reinforced polymer at room temperature: experimental setups evaluated by an optical measurement system

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Composite materials are of great interest for industrial applications because of their outstanding properties. Each composite material has its own characteristics due to the large number of possible combinations of matrix and filler. As a result of their compounding, composites usually show a complex material behavior. This work is focused on the experimental testing of a short fiber-reinforced thermoplastic composite at room temperature. The characteristic behavior of this material class is often based on a superposition of typical material effects. The predicted characteristic material properties such as elasto-plasticity, damage and anisotropy of the investigated material are obtained from results of cyclic uniaxial tensile tests at constant strain rate. Concerning the manufacturing process as well as industrial applications, the experimental investigations are extended to multiaxial loading situations. Therefore, the composite material is examined with a setup close to a deep-drawing process, the Nakajima test (Nakazima et al. in Study on the formability of steel sheets. Yawate Technical Report No. 264, pp 8517–8530, 1968). The evaluation of the experimental investigations is provided by an optical analysis system using a digital image correlation software. Finally, based on the results of the uniaxial tensile tests, a one-dimensional macroscopic model is introduced and first results of the simulation are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bay, R.S., Tucker, C.L.: Fiber orientation in simple injection moldings. Part I: theory and numerical methods. Polym. Compos. 13(4), 317–331 (1992)

    Article  Google Scholar 

  2. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier Verlag, New York (1972)

  3. Becker, T., Splitthof, K., Siebert, T., Kletting, P.: Error Estimations of 3D Digital Image Correlation Measurements, p. 63410ff. Int. Soc. Opt. Photo. (2006)

  4. Bernasconi, A., Davoli, P., Basile, A., Filippi, A.: Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6. Int. J. Fatigue 29(2), 199–208 (2007)

    Article  Google Scholar 

  5. Botha, T.R., Els, P.S.: Digital image correlation techniques for measuring tyre–road interface parameters: part 1. Side-slip angle measurement on rough terrain. J. Terramech. 61, 87–100 (2015)

    Article  Google Scholar 

  6. Bowen, R.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics. Academic Press, New York (1976)

    Google Scholar 

  7. Calloch, S., Marquis, D.: Triaxial tension–compression tests for multiaxial cyclic plasticity. Int. J. Plast. 15(5), 521–549 (1999)

    Article  MATH  Google Scholar 

  8. Campos, H.B., Butuc, M.C., Grácio, J.J., Rocha, J.E., Duarte, J.M.F.: Theorical and experimental determination of the forming limit diagram for the AISI 304 stainless steel. J. Mater. Process. Technol. 179(1), 56–60 (2006)

    Article  Google Scholar 

  9. Chu, T., Ranson, W., Sutton, M.: Applications of digital–image-correlation techniques to experimental mechanics. Exp. Mech. 25(3), 232–244 (1985)

    Article  Google Scholar 

  10. Cooreman, S., Lecompte, D., Sol, H., Vantomme, J., Debruyne, D.: Identification of mechanical material behavior through inverse modeling and DIC. Proc. Soc. Exp. Mech. 35, 421–433 (2008)

    Article  MATH  Google Scholar 

  11. DIN EN ISO 527-2, Kunststoffe-Bestimmung der Zugeigenschaften-Teil2: Prüfbedingungen für Form- und Extrusionsmassen (1996)

  12. Dano, M.L., Gendron, G., Maillette, F., Bissonnette, B.: Experimental characterization of damage in random short glass fiber reinforced composites. J. Thermoplast. Compos. Mater. 19(1), 79–96 (2006)

    Article  Google Scholar 

  13. Dantec Dynamics: Istra4D Manual. Dantec Dynamics, Ulm (2015)

  14. Darlington, M., Smith, A.: Some features of the injection molding of short fiber reinforced thermoplastics in center sprue-gated cavities. Polym. Compos. 8(1), 16–21 (1987)

    Article  Google Scholar 

  15. de Boer, R., Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Universität Essen, Forschungsberichte aus dem Bauwesen (1986)

  16. De Monte, M., Moosbrugger, E., Jaschek, K., Quaresimin, M.: Multiaxial fatigue of a short glass fibre reinforced polyamide 6.6-fatigue and fracture behaviour. Int. J. Fatigue 32(1), 17–28 (2010)

    Article  Google Scholar 

  17. Diebels, S.: Mikropolare Zweiphasenmodelle: Formulierung auf der Basis der Theorie Poröser Medien. Inst. für Mechanik (Bauwesen) (2000)

  18. Fictorie, E., van den Boogaard, A., Atzema, E.: Influence of punch radius in a Nakazima test for mild steel and aluminium. Int. J. Mater. Form. 3(1), 1179–1182 (2010)

    Article  Google Scholar 

  19. Gehring, F., Bouchart, V., Dinzart, F., Chevrier, P.: Microstructure, mechanical behaviour, damage mechanisms of polypropylene/short hemp fibre composites: experimental investigations. J. Thermoplast. Compos. Mater. 31(22), 1576–1585 (2012)

    Google Scholar 

  20. Geiger, M., Merklein, M.: Determination of forming limit diagrams—a new analysis method for characterization of materials’ formability. CIRP Ann. Manuf. Technol. 52(1), 213–216 (2003)

    Article  Google Scholar 

  21. Gupta, M., Wang, K.: Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: simulated and experimental results. Polym. Compos. 14(5), 367–382 (1993)

    Article  Google Scholar 

  22. Haddout, A., Villoutreix, G.: An experimental study of fibre orientation in injection moulded short glass fibre-reinforced polypropylene/polyarylamide composites. Composites 25(2), 147–153 (1994)

    Article  Google Scholar 

  23. Halpin, J.C., Kardos, J.: The Halpin–Tsai equations: a review. Polym. Eng. Sci. 16(5), 344–352 (1976)

    Article  Google Scholar 

  24. Hasek, V.V.: Investigation and theoretical description of factors relevant to the forming limit diagram—1. Blech Rohre Profile 25(5), 213–219 (1978)

    Google Scholar 

  25. Hashemi, S.: Strength of single-and double-gated injection moulded short glass fibre reinforced polycarbonate. J. Thermoplast. Compos. Mater. 26(3), 276–295 (2013)

    Article  Google Scholar 

  26. Hegler, R.P., Mennig, G., Schmauch, C.: Phase separation effects in processing of glass-bead- and glass-fiber-filled thermoplastics by injection molding. Adv. Polym. Technol. 7(1), 3–20 (1987)

    Article  Google Scholar 

  27. Hoffmann, S.: Computational homogenization of short fiber reinforced thermoplastic materials. Ph.D. thesis. Technische Universiät. Kaiserslautern, Lehrstuhl für Technische Mechanik (2012)

  28. Johlitz, M., Diebels, S.: Characterisation of a polymer using biaxial tension tests. Part I: hyperelasticity. Arch. Appl. Mech. 81(10), 1333–1349 (2011)

    Article  ADS  MATH  Google Scholar 

  29. Jung, A., Beex, L., Diebels, S., Bordas, S.: Open-cell aluminium foams with graded coatings as passively controllable energy absorbers. Mater. Des. 87, 36–41 (2015)

    Article  Google Scholar 

  30. Jung, A., Grammes, T., Diebels, S.: Micro-structural motivated phenomenological modelling of metal foams: experiments and modelling. Arch. Appl. Mech. 85(8), 1147–1160 (2015)

    Article  ADS  Google Scholar 

  31. Lees, J.K.: A study of the tensile strength of short fiber reinforced plastics. Polym. Eng. Sci. 8(3), 195–201 (1968)

    Article  Google Scholar 

  32. Meng, Q., Wang, Z.: Theoretical analysis of interfacial debonding and fiber pull-out in fiber-reinforced polymer–matrix composites. Arch. Appl. Mech. 85(6), 745–759 (2015)

    Article  ADS  Google Scholar 

  33. Monte, M.D., Moosbrugger, E., Quaresimin, M.: Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6 cyclic loading. Compos. Part A Appl. Sci. 41(10), 1368–1379 (2010)

    Article  Google Scholar 

  34. Metallische Werkstoffe-Bleche und Bänder-Bestimmung der Grenzformänderungskurve-Teil 2: Bestimmung von Grenzformänderungskurven im Labor (ISO 12004-2:2008)

  35. Mortazavian, S., Fatemi, A.: Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Compos. Part B Eng. 72, 116–129 (2014)

  36. Mortazavian, S., Fatemi, A.: Fatigue behavior and modeling of short fiber reinforced polymer composites: a literature review. Int. J. Fatigue 70, 297–321 (2015)

    Article  Google Scholar 

  37. Mortazavian, S., Fatemi, A.: Fatigue behavior and modeling of short fiber reinforced polymer composites including anisotropy and temperature effects. Int. J. Fatigue 77, 12–27 (2015)

    Article  Google Scholar 

  38. Mouhmid, B., Imad, A., Benseddiq, N., Benmedakhne, S., Maazouz, A.: A study of the mechanical behaviour of a glass fibre reinforced polyamide 6, 6: experimental investigation. Polym. Test. 25(4), 544–552 (2006)

    Article  Google Scholar 

  39. Nakazima, K., Kikuma, T., Hasuka, K.: Study on the Formability of Steel Sheets. Yawate Technical Report No. 264, pp. 8517–8530 (1968)

  40. Pan, B., Qian, K., Xie, H., Asundi, A.: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20(6), 062001 (2009)

    Article  ADS  Google Scholar 

  41. Phua, Y., Mohd Ishak, Z., Senawi, R.: Injection molded short glass and carbon fibers reinforced polycarbonate hybrid composites: effects of fiber loading. J. Reinf. Plast. Compos. 29(17), 2592–2603 (2010)

    Article  Google Scholar 

  42. Quaresimin, M., Susmel, L., Talreja, R.: Fatigue behaviour and life assessment of composite laminates under multiaxial loadings. Int. J. Fatigue 32(1), 2–16 (2010)

    Article  Google Scholar 

  43. Röhrig, C., Diebels, S.: Characterization of short fiber reinforced polymers. PAMM 15(1), 349–350 (2015)

    Article  Google Scholar 

  44. Saito, M., Kukula, S., Kataoka, Y.: Practical use of the statistically modified laminate model for injection moldings. Part 1: method and verification. Polym. Compos. 19(5), 497–505 (1998)

    Article  Google Scholar 

  45. Seibert, H., Scheffer, T., Diebels, S.: Biaxial testing of elastomers: experimental setup, measurement and experimental optimisation of specimen’s shape. Tech. Mech. 34(2), 72–89 (2014)

    Google Scholar 

  46. Simo, J.C., Hughes, T.J.: Computational inelasticity, vol. 7. Springer, Berlin (2006)

    MATH  Google Scholar 

  47. Sutton, M.A., Orteu, J.J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, Berlin (2009)

    Google Scholar 

  48. Thomason, J., Vlug, M.: Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 1. Tensile and flexural modulus. Compos. Part A Appl. Sci. 27(6), 477–484 (1996)

    Article  Google Scholar 

  49. Truesdell, C., Toupin, R.: The Classical Field Theories. Springer, Berlin (1960)

    Book  Google Scholar 

  50. Tyulyukovskiy, E., Huber, N.: Identification of viscoplastic material parameters from spherical indentation data: part I. Neural networks. J. Mater. Res. 21(3), 664–676 (2006)

    Article  ADS  Google Scholar 

  51. Vacher, P., Haddad, A., Arrieux, R.: Determination of the forming limit diagrams using image analysis by the corelation method. CIRP Ann. Manuf. Technol. 48(1), 227–230 (1999)

    Article  Google Scholar 

  52. Vincent, M., Devilers, E., Agassant, J.F.: Fibre orientation calculation in injection moulding of reinforced thermoplastics. J. Non-Newton. Fluid Mech. 73(3), 317–326 (1997)

    Article  Google Scholar 

  53. Voigt, W.: Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. 274(12), 573–587 (1889)

    Article  MATH  Google Scholar 

  54. www.matweb.com: MatWeb—Material Property Data. www.matweb.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Röhrig.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röhrig, C., Scheffer, T. & Diebels, S. Mechanical characterization of a short fiber-reinforced polymer at room temperature: experimental setups evaluated by an optical measurement system. Continuum Mech. Thermodyn. 29, 1093–1111 (2017). https://doi.org/10.1007/s00161-017-0560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0560-3

Keywords

Navigation