Skip to main content
Log in

CFD modelling of most probable bubble nucleation rate from binary mixture with estimation of components’ mole fraction in critical cluster

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The employment of different mathematical models to address specifically for the bubble nucleation rates of water vapour and dissolved air molecules is essential as the physics for them to form bubble nuclei is different. The available methods to calculate bubble nucleation rate in binary mixture such as density functional theory are complicated to be coupled along with computational fluid dynamics (CFD) approach. In addition, effect of dissolved gas concentration was neglected in most study for the prediction of bubble nucleation rates. The most probable bubble nucleation rate for the water vapour and dissolved air mixture in a 2D quasi-stable flow across a cavitating nozzle in current work was estimated via the statistical mean of all possible bubble nucleation rates of the mixture (different mole fractions of water vapour and dissolved air) and the corresponding number of molecules in critical cluster. Theoretically, the bubble nucleation rate is greatly dependent on components’ mole fraction in a critical cluster. Hence, the dissolved gas concentration effect was included in current work. Besides, the possible bubble nucleation rates were predicted based on the calculated number of molecules required to form a critical cluster. The estimation of components’ mole fraction in critical cluster for water vapour and dissolved air mixture was obtained by coupling the enhanced classical nucleation theory and CFD approach. In addition, the distribution of bubble nuclei of water vapour and dissolved air mixture could be predicted via the utilisation of population balance model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

Correction factor

D :

Rate of molecules striking on a surface area of the cluster (molecules/m2s)

f L :

Lost degree of freedom during the dissolution process

G(V):

Growth rate of bubble number density (number/m3s)

ΔH vap :

Enthalpies for the evaporation of the solution

ΔH f :

Enthalpies for the freezing of the solution

J :

Bubble nucleation rate (nuclei/m3s)

k B :

Boltzmann’s constant (J/K)

k :

Specified number of moments

Li:

Abscissas

m k :

kth moment of number density function

m :

Mass of molecule (kg)

n c :

Number of molecules

N:

Number density of the liquid (molecules/m3)

n(V,t):

Bubble number density distribution per unit volume (V) for a given time (t)

P :

Pressure (Pa)

P i :

Pressure to saturate the dissolved gas in the liquid

Q :

Order of quadrature approximation

r :

Radius (m)

R :

Gas constant (J/K mol)

x :

Mole fraction of dissolved gas molecules in the solution

T :

Liquid temperature (K)

T f :

Melting temperature of the solution (K)

v :

Volume of a molecules (m)

wi:

Weights

Z f :

Zeldovich nonequilibrium factor

β′ :

Accommodation coefficient of molecules to the cluster

ξ :

Fraction of vapour or gas molecules in the critical cluster

η :

Weight factor of the vapour and dissolved gas molecules for the formation of critical cluster

λ :

Rate of number of gas molecules participated in the formation of critical cluster per unit volume (molecules/m 3 s)

ρ :

Density (kg/m3)

g :

Gas

H2O:

Water

l :

Liquid water

v :

Vapour

gv :

Vapour and Gas

References

  1. Arndt R.E.A.: Cavitation in fluid machinery and hydraulic structures. Annu. Rev. Fluid Mech. 13(1), 273–326 (1981). doi:10.1146/annurev.fl.13.010181.001421

    Article  ADS  MathSciNet  Google Scholar 

  2. Elias E., Chambré P.L.: Bubble transport in flashing flow. Int. J. Multiph. Flow 26(2), 191–206 (2000). doi:10.1016/S0301-9322(99)00011-7

    Article  MATH  Google Scholar 

  3. Kierzkowska-Pawlak H., Chacuk A.: Pressure swing absorption of carbon dioxide in physical solvents, vol. 35. Environmental Engineering III. Taylor & Francis Group, London (2009)

    Google Scholar 

  4. Sampath Kumar K., Moholkar V.S.: Conceptual design of a novel hydrodynamic cavitation reactor. Chem. Eng. Sci. 62(10), 2698–2711 (2007). doi:10.1016/j.ces.2007.02.010

    Article  Google Scholar 

  5. Polanco G., Holdø A.E., Munday G.: General review of flashing jet studies. J. Hazard Mater. 173(1–3), 2–18 (2010). doi:10.1016/j.jhazmat.2009.08.138

    Article  MATH  Google Scholar 

  6. Lubetkin S.D.: The fundamentals of bubble evolution. Chem. Soc. Rev. 24(4), 243–250 (1995)

    Article  Google Scholar 

  7. Lubetkin, S.D.: Why is it much easier to nucleate gas bubbles than theory predicts? Langmuir 19(7), 2575–2587 (2003). doi:10.1021/la0266381

  8. Caupin F., Herbert E.: Cavitation in water: a review. Comptes Rendus Physique 7(9–10), 1000–1017 (2006). doi:10.1016/j.crhy.2006.10.015

    Article  ADS  Google Scholar 

  9. Delale C.F., Hruby J., Marsik F.: Homogeneous bubble nucleation in liquids: the classical theory revisited. J. Chem. Phys. 118(2), 792–806 (2003)

    Article  ADS  Google Scholar 

  10. Delale C.F., Okita K., Matsumoto Y.: Steady-state cavitating nozzle flows with nucleation. J. Fluids Eng. 127(4), 770–777 (2005)

    Article  Google Scholar 

  11. Holden B.S., Katz J.L.: The homogeneous nucleation of bubbles in superheated binary liquid mixtures. AIChE J. 24(2), 260–267 (1978). doi:10.1002/aic.690240215

    Article  Google Scholar 

  12. Singhal A.K., Athavale M.M., Li H., Jiang Y.: Mathematical basis and validation of the full cavitation model. J. Fluids Eng. 124(3), 617–624 (2002)

    Article  Google Scholar 

  13. Kwak H.-Y., Oh S.-D.: Gas-vapor bubble nucleation-a unified approach. J. Colloid Interface Sci. 278(2), 436–446 (2004)

    Article  Google Scholar 

  14. Huang B., Zhao Y., Wang G.: Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows. Comput. Fluids 92(0), 113–124 (2014). doi:10.1016/j.compfluid.2013.12.024

    Article  Google Scholar 

  15. Dai, S., Younis, B.A., Sun, L.: Large-eddy simulations of cavitation in a square surface cavity. Appl. Math. Model. doi:10.1016/j.apm.2014.04.059

  16. Goncalvès E.: Modeling for non isothermal cavitation using 4-equation models. Int. J. Heat Mass Transf. 76(0), 247–262 (2014). doi:10.1016/j.ijheatmasstransfer.2014.04.065

    Article  Google Scholar 

  17. Sou A., Biçer B., Tomiyama A.: Numerical simulation of incipient cavitation flow in a nozzle of fuel injector. Comput. Fluids 103(0), 42–48 (2014). doi:10.1016/j.compfluid.2014.07.011

    Article  Google Scholar 

  18. Rodio M.G., Congedo P.M.: Robust analysis of cavitating flows in the Venturi tube. Eur. J. Mech. B/Fluids 44(0), 88–99 (2014). doi:10.1016/j.euromechflu.2013.11.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Perpar M., Polutnik E., Pečar M., Žun I.: Bubbly structures in a cavitating slot orifice. Exp. Therm. Fluid Sci. 53(0), 57–69 (2014). doi:10.1016/j.expthermflusci.2013.11.003

    Article  Google Scholar 

  20. Hao Z.R., Gu C.W.: Numerical modeling for gaseous cavitation of oil film and non-equilibrium dissolution effects in thrust bearings. Tribol. Int. 78(0), 14–26 (2014). doi:10.1016/j.triboint.2014.04.028

    Article  Google Scholar 

  21. Bastos F., de Freitas R.: Modeling gaseous and vaporous cavitation in liquid flows within the context of the thermodynamics of irreversible processes. Int. J. Non-Linear Mech. 65(0), 245–252 (2014). doi:10.1016/j.ijnonlinmec.2014.06.006

    Article  ADS  Google Scholar 

  22. Kwak H.-Y., Kang K.-M.: Gaseous bubble nucleation under shear flow. Int. J. Heat Mass Transf. 52(21–22), 4929–4937 (2009). doi:10.1016/j.ijheatmasstransfer.2009.06.002

    Article  Google Scholar 

  23. Cheng J., Yang C., Mao Z.-S., Zhao C.: CFD modeling of nucleation, growth, aggregation, and breakage in continuous precipitation of barium sulfate in a stirred tank. Ind. Eng. Chem. Res. 48(15), 6992–7003 (2009). doi:10.1021/ie9004282

    Article  Google Scholar 

  24. McGraw R.: Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27(2), 255–265 (1997). doi:10.1080/02786829708965471

    Article  Google Scholar 

  25. Petitti M., Vanni M., Marchisio D.L., Buffo A., Podenzani F.: Simulation of coalescence, break-up and mass transfer in a gas–liquid stirred tank with CQMOM. Chem. Eng. J. 228(0), 1182–1194 (2013). doi:10.1016/j.cej.2013.05.047

    Article  Google Scholar 

  26. Venneker B.C.H., Derksen J.J., Vanden Akker H.E.A.: Population balance modeling of aerated stirred vessels based on CFD. AIChE J. 48(4), 673–685 (2002). doi:10.1002/aic.690480404

    Article  Google Scholar 

  27. Gunawan R., Fusman I., Braatz R.D.: High resolution algorithms for multidimensional population balance equations. AIChE J. 50(11), 2738–2749 (2004). doi:10.1002/aic.10228

    Article  Google Scholar 

  28. Wang Y.-C., Brennen C.E.: One-dimensional bubbly cavitating flows through a converging-diverging nozzle. J. Fluids Eng. 120(1), 166–170 (1988). doi:10.1115/1.2819642

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lau Kok Keong.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, B.Z., Keong, L.K. & Shariff, A.M. CFD modelling of most probable bubble nucleation rate from binary mixture with estimation of components’ mole fraction in critical cluster. Continuum Mech. Thermodyn. 28, 655–668 (2016). https://doi.org/10.1007/s00161-014-0398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0398-x

Keywords

Navigation