Skip to main content

Advertisement

Log in

Weak variations of Lipschitz graphs and stability of phase boundaries

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the case of Lipschitz extremals of vectorial variational problems, an important class of strong variations originates from smooth deformations of the corresponding non-smooth graphs. These seemingly singular variations, which can be viewed as combinations of weak inner and outer variations, produce directions of differentiability of the functional and lead to singularity-centered necessary conditions on strong local minima: an equality, arising from stationarity, and an inequality, implying configurational stability of the singularity set. To illustrate the underlying coupling between inner and outer variations, we study in detail the case of smooth surfaces of gradient discontinuity representing, for instance, martensitic phase boundaries in non-linear elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S.: The coerciveness problem for integro-differential forms. J. Anal. Math. 6, 183–223 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1976/77)

    Article  Google Scholar 

  3. Benzoni-Gavage S.: Stability of subsonic planar phase boundaries in a van der Waals fluid. Arch. Ration. Mech. Anal. 150(1), 23–55 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berdichevsky V.L.: Variational principles of continuum mechanics. I and II. Springer, Berlin (2009)

    Google Scholar 

  5. Bhattacharya, K.: Microstructure of martensite. Oxford Series on Materials Modelling. Oxford University Press, Oxford, Why it forms and how it gives rise to the shape-memory effect. (2003)

  6. Biot M.A.: Mechanics of incremental deformations. Wiley, New York (1965)

    Google Scholar 

  7. Budiansky B., Rice J.: Conservation laws and energy-release rates. J. appl. Mech 40(1), 201 (1973)

    Article  MATH  Google Scholar 

  8. Dacorogna B.: Direct methods in the calculus of variations. Springer, New York (1989)

    MATH  Google Scholar 

  9. de Figueiredo D.G.: The coerciveness problem for forms over vector valued functions. Comm. Pure Appl. Math. 16, 63–94 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  10. Erdmann G.: Ueber die unstetige Lösungen in der Variationsrechnung. J. Reine Angew. Math. 82, 21–30 (1877)

    Article  Google Scholar 

  11. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. Lond. Ser. A Math. Phys. Sci. 241, 376–396 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Eshelby J.D.: Energy relations and energy momentum tensor in continuum mechanics. In: Kanninen, M., Adler, W., Rosenfeld, A., Jaffee, R. (eds) Inelastic behavior of solids, pp. 77–114. McGraw-Hill, New York (1970)

    Google Scholar 

  13. Evans L.C.: Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95(3), 227–252 (1986)

    Article  MATH  Google Scholar 

  14. Francfort G., Sivaloganathan J.: On conservation laws and necessary conditions in the calculus of variations. Proc. Roy. Soc. Edinburgh Sect. A 132(6), 1361–1371 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Freidin A.B.: On new phase inclusions in elastic solids. ZAMM Z. Angew. Math. Mech. 87(2), 102–116 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Freistühler H., Plaza R.G.: Normal modes and nonlinear stability behaviour of dynamic phase boundaries in elastic materials. Arch. Ration. Mech. Anal. 186(1), 1–24 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gelfand, I.M., Fomin, S.V.: Calculus of variations. Prentice-Hall (1963)

  18. Giaquinta, M., Hildebrandt, S.: Calculus of variations. I, vol. 310 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1996) The Lagrangian formalism

  19. Grabovsky Y.: Bounds and extremal microstructures for two-component composites: a unified treatment based on the translation method. Proc. Roy. Soc. Lond. Ser. A. 452(1947), 945–952 (1996)

    Article  Google Scholar 

  20. Grabovsky Y., Kohn R.V.: Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. I: the confocal ellipse construction. J. Mech. Phys. Solids 43(6), 933–947 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Grabovsky Y., Kohn R.V.: Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II: the Vigdergauz microstructure. J. Mech. Phys. Solids 43(6), 949–972 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Grabovsky, Y., Kucher, V., Truskinovsky, L.: Probing the limits of rank-one convexity. (In preparation) (2011)

  23. Grabovsky Y., Mengesha T.: Direct approach to the problem of strong local minima in calculus of variations. Calc. Var. PDE 29, 59–83 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Grabovsky Y., Mengesha T.: Sufficient conditions for strong local minima: the case of C 1 extremals. Trans. Amer. Math. Soc. 361(3), 1495–1541 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Grabovsky, Y., Truskinovsky, L.: Roughening instability of broken extremals. Arch. Rat. Mech. Anal. (2010). doi:10.1007/s00205-010-0377-8

  26. Grinfeld M.A.: On the thermodynamic stability of material. Dokl. Akad. Nauk SSSR 253(6), 1349–1353 (1980)

    MathSciNet  Google Scholar 

  27. Grinfeld M.A.: Stability of heterogeneous equilibrium in systems containing solid elastic phases. Dokl. Akad. Nauk SSSR 265(4), 836–840 (1982)

    MathSciNet  Google Scholar 

  28. Grinfeld, M.A.: Metody mekhaniki sploshnykh sred v teorii fazovykh prevrashchenii. “Nauka”, Moscow (1990) English translation in [29]

  29. Grinfeld M.A.: Thermodynamic methods in the theory of heterogeneous systems. Longman, New York (1991)

    Google Scholar 

  30. Gurtin M.E.: Configurational Forces as Basic Concepts of Continuum Physics, vol. 137 of Applied Mathematical Sciences. Springer, New York (2000)

    Google Scholar 

  31. James R.D.: Finite deformation by mechanical twinning. Arch. Ration. Mech. Anal. 77(2), 143–176 (1981)

    Article  MATH  Google Scholar 

  32. Khachaturyan A.G.: Theory of Structural Transformation in Solids. Wiley, New York (1983)

    Google Scholar 

  33. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. Comm. Pure Appl. Math. 39, 113–137, 139–182 and 353–377 (1986)

    Google Scholar 

  34. Kreiss H.-O.: Initial boundary value problems for hyperbolic systems. Comm. Pure Appl. Math. 23, 277–298 (1970)

    Article  MathSciNet  Google Scholar 

  35. Kristensen J., Taheri A.: Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170(1), 63–89 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kucher, V.A., Osmolovskii, V.G.: Computation of the second variation of the energy functional of a two-phase medium. J. Math. Sci. (New York) 106(3), 2929–2951 (2001) Function theory and phase transitions

    Google Scholar 

  37. Lifshits, I.M., Gulida, L.S.: On nucleation under local melting. Dokl. Akad. Nauk SSSR 87(4), 523–526 (1952) in Russian, English version available

    Google Scholar 

  38. Lifshits I.M., Gulida L.S. On the theory of local melting. Dokl. Akad. Nauk SSSR 87(3), 377–380 (1952) in Russian, English version available

    Google Scholar 

  39. Lopatinski, Ya.B.: On a method of reducing boundary problems for a system of differential equations of elliptic type to regular integral equations. Ukrain. Mat. Zh. 5, 123–151 (1953) (In Russian)

    Google Scholar 

  40. Maugin G.A.: Material Inhomogeneities in Elasticity. Chapman and Hall Ltd., London (1993)

    MATH  Google Scholar 

  41. Mielke A., Sprenger P.: Quasiconvexity at the boundary and a simple variational formulation of Agmon’s condition. J. Elast. 51(1), 23–41 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Mura T.: Micromechanics of defects in solids. Springer, (1987)

  43. Nečas, J.: Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity. In: Theory of Nonlinear Operators (Proc. Fourth Internat. Summer School, Acad. Sci., Berlin, 1975), pages 197–206. Abh. Akad. Wiss. DDR Abt. Math.–Natur.–Tech., Jahrgang 1977, 1. Akademie-Verlag, Berlin (1977)

  44. Noether, E.: Invariante variationsprobleme. Nachr. v. d. Ges. d. Wiss. zu Göttingen, pages 235–257 (1918) English translation in “Transport Theory and Statistical Mechanics” 1(3), 183–207 (1971)

  45. Olver P.J.: Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics. Springer, New York (1986)

    Book  Google Scholar 

  46. Pitteri M., Zanzotto G.: Continuum models for phase transitions and twinning in crystals, vol. 19 of Applied Mathematics (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL (2003)

    Google Scholar 

  47. Robin P.-Y.F.: Thermodynamic equilibrium across a coherent interface in a stressed crystal. Am. Mineral. 59(11–12), 1286–1298 (1974)

    Google Scholar 

  48. Shapiro Z.Ya.: On general boundary value problems of elliptic type. Izv. Akad. Nauk Ser. Mar. 17, 539–562 (1953) (In Russian)

    MATH  Google Scholar 

  49. Šilhavý M.: The mechanics and thermodynamics of continuous media, texts and monographs in physics. Springer, Berlin (1997)

    Google Scholar 

  50. Simpson H.C., Spector S.J.: On the positivity of the second variation in finite elasticity. Arch. Ration. Mech. Anal. 98(1), 1–30 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  51. Simpson H.C., Spector S.J.: Necessary conditions at the boundary for minimizers in finite elasticity. Arch. Ration. Mech. Anal. 107(2), 105–125 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  52. Simpson H.C., Spector S.J.: Some necessary conditions at an internal boundary for minimizers in finite elasticity. J. Elast. 26(3), 203–222 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  53. Šverák V., Yan X.: A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. Partial Differ. Equ. 10(3), 213–221 (2000)

    Article  MATH  Google Scholar 

  54. Thomas T.Y.: Plastic flow and fracture in solids. Mathematics in Science and Engineering, vol. 2. Academic Press, New York (1961)

    Google Scholar 

  55. Vigdergauz S.B.: Effective elastic parameters of a plate with a regular system of equal-strength holes. MTT 21(2), 165–169 (1986)

    Google Scholar 

  56. Vigdergauz S.B.: Piecewise-homogeneous plates of extremal stiffness. PMM 53(1), 76–80 (1989)

    MATH  MathSciNet  Google Scholar 

  57. Vigdergauz S.B.: Two-dimensional grained composites of extreme rigidity. ASME J. Appl. Mech. 61(2), 390–394 (1994)

    Article  MATH  ADS  Google Scholar 

  58. Šverák V., Yan X.: Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA 99(24), 15269–15276 (2002) (electronic)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. Young L.C.: Lectures on the calculus of variations and optimal control theory. W. B. Saunders Co., Philadelphia (1969) Foreword by Wendell H. Fleming

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Grabovsky.

Additional information

Communicated by Sergio Conti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabovsky, Y., Kucher, V.A. & Truskinovsky, L. Weak variations of Lipschitz graphs and stability of phase boundaries. Continuum Mech. Thermodyn. 23, 87–123 (2011). https://doi.org/10.1007/s00161-010-0171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-010-0171-8

Keywords

Navigation