Skip to main content
Log in

Shocks versus kinks in a discrete model of displacive phase transitions

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

An Erratum to this article was published on 03 November 2012

Abstract

We consider dynamics of phase boundaries in a bistable one-dimensional lattice with harmonic long-range interactions. Using Fourier transform and Wiener–Hopf technique, we construct traveling wave solutions that represent both subsonic phase boundaries (kinks) and intersonic ones (shocks). We derive the kinetic relation for kinks that provides a needed closure for the continuum theory. We show that the different structure of the roots of the dispersion relation in the case of shocks introduces an additional free parameter in these solutions, which thus do not require a kinetic relation on the macroscopic level. The case of ferromagnetic second-neighbor interactions is analyzed in detail. We show that the model parameters have a significant effect on the existence, structure, and stability of the traveling waves, as well as their behavior near the sonic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyaratne R., Knowles J.K.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal. 114, 119–154 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atkinson W., Cabrera N.: Motion of a Frenkel-Kontorova dislocation in a one-dimensional crystal. Phys. Rev. A 138(3), 763–766 (1965)

    ADS  Google Scholar 

  3. Bhattacharya K.: Microstructure of Martensite—Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford University Press, USA (2003)

    Google Scholar 

  4. Celli V., Flytzanis N.: Motion of a screw dislocation in a crystal. J. Appl. Phys. 41(11), 4443–4447 (1970)

    Article  ADS  Google Scholar 

  5. Dafermos C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  6. Ericksen J.L.: Equilibrium of bars. J. Elast. 5, 191–202 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Escobar J.C., Clifton R.J.: On pressure-shear plate impact for studying the kinetics of stress-induced phase transformations. J. Mater. Sci. Eng. A 170, 125–142 (1993)

    Article  Google Scholar 

  8. Escobar J.C., Clifton R.J.: Pressure-shear impact-induced phase transitions in Cu-14.4Al-4.19Ni single crystals. SPIE 2427, 186–197 (1995)

    Article  ADS  Google Scholar 

  9. Ishioka S.: Uniform motion of a screw dislocation in a lattice. J. Phys. Soc. Jpn. 30, 323–327 (1971)

    Article  ADS  Google Scholar 

  10. Kresse O., Truskinovsky L.: Mobility of lattice defects: discrete and continuum approaches. J. Mech. Phys. Solids 51, 1305–1332 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Kresse O., Truskinovsky L.: Lattice friction for crystalline defects: from dislocations to cracks. J. Mech. Phys. Solids 52, 2521–2543 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. LeFloch P.G.: Hyperbolic Systems of Conservation Laws. ETH Lecture Note Series. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  13. Marder M., Gross S.: Origin of crack tip instabilities. J. Mech. Phys. Solids 43(1), 1–48 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Noble B.: Methods Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations. 2nd edn. Chelsea Publishing Company, New York (1988)

    MATH  Google Scholar 

  15. Niemczura J., Ravi-Chandar K.: Dynamics of propagating phase boundaries in NiTi. J. Mech. Phys. Solids 54, 2136–2161 (2006)

    Article  ADS  MATH  Google Scholar 

  16. Serre D.: Systems of Conservation Laws, Volume 1, 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  17. Shaw J.A., Kyriakides S.: On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater. 45, 683–700 (1997)

    Article  Google Scholar 

  18. Slemrod M.: Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Ration. Mech. Anal. 81, 301–315 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Slepyan L.I.: Antiplane problem of a crack in a lattice. Mech. Solids 16(5), 101–115 (1982)

    MathSciNet  Google Scholar 

  20. Slepyan L.I.: Models and Phenomena in Fracture Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  21. Slepyan L.I., Troyankina L.V.: Fracture wave in a chain structure. J. Appl. Mech. Tech. Phys. 25(6), 921–927 (1984)

    Article  ADS  Google Scholar 

  22. Slepyan L.I., Troyankina L.V.: Impact waves in a nonlinear chain. In: Gol’dstein, R.V. (eds) Plasticity and Fracture of Solids, pp. 175–186. Nauka, Moscow (1988) (in Russian)

    Google Scholar 

  23. Slepyan L.I., Cherkaev A., Cherkaev E.: Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation. J. Mech. Phys. Solids 53, 407–436 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Titchmarsh E.C.: Theory of Functions. 2nd edn. Oxford University press, USA (1976)

    Google Scholar 

  25. Truskinovsky L.: Equilibrium interphase boundaries. Sov. Phys. Doklady 27, 306–331 (1982)

    Google Scholar 

  26. Truskinovsky L.: Dynamics of nonequilibrium phase boundaries in a heat conducting elastic medium. J. Appl. Math. Mech. 51, 777–784 (1987)

    Article  MathSciNet  Google Scholar 

  27. Truskinovsky L.: Kinks versus Shocks. In: Fosdick, R., Dunn, E., Slemrod, M. (eds) Shock Induced Transitions and Phase Structures in General Media, The IMA Volumes in Mathematics and Its Applications, vol. 52, pp. 185–229. Springer, Berlin (1993)

    Chapter  Google Scholar 

  28. Truskinovsky L., Vainchtein A.: The origin of nucleation peak in transformational plasticity. J. Mech. Phys. Solids 52, 1421–1446 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Truskinovsky L., Vainchtein A.: Kinetics of martensitic phase transitions: Lattice model. SIAM J. Appl. Math. 66, 533–553 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Truskinovsky L., Vainchtein A.: Quasicontinuum modelling of short-wave instabilities in crystal lattices. Phil. Mag. 85(33–35), 4055–4065 (2005)

    Article  ADS  Google Scholar 

  31. Truskinovsky L., Vainchtein A.: Dynamics of martensitic phase boundaries: discreteness, dissipation and inertia. Cont. Mech. Thermodyn. 20(2), 97–122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vainchtein A.: The role of spinodal region in the kinetics of lattice phase transitions. J. Mech. Phys. Solids 58(2), 227–240 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Vainchtein A., Van Vleck E.S.: Nucleation and propagation of phase mixtures in a bistable chain. Phys. Rev. B 79(14), 144123 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vainchtein.

Additional information

Communicated by Prof. Marshall Slemrod.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00161-012-0276-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trofimov, E., Vainchtein, A. Shocks versus kinks in a discrete model of displacive phase transitions. Continuum Mech. Thermodyn. 22, 317–344 (2010). https://doi.org/10.1007/s00161-010-0148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-010-0148-7

Keywords

Navigation