Skip to main content
Log in

L1 and BV-type stability of the inelastic Boltzmann equation near vacuum

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The L 1 and BV-type stability to mild solutions of the inelastic Boltzmann equation is given in this paper. The result is an extension of the stability of the classical solution of the elastic Boltzmann equation proved in Ha (Arch. Ration. Mech. Anal. 173:25–42, 2004 [16]). The observation relies on the energy loss of the inelastic Boltzmann equation. This is a continuity work of Alonso (Indiana Univ. Math. J. [1]), where the author obtained the global existence of a mild solution for the inelastic Boltzmann equation. The proof is based on the mollification method and constructing some functionals as the one in Chae and Ha (Contin. Mech. Thermodyn. 17(7):511–524, 2006 [9]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso R.J.: Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data. Indiana Univ. Math. J. 58, 999–1022 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bellomo N., Toscani G.: On the Cauchy problem for the nonlinear Boltzmann equation: global existence, uniqueness and asymptotic behavior. J. Math. Phys. 26, 334–338 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bobylev A.V., Cercignani C.: Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Statist. Phys. 110, 333–375 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bobylev A.V., Cercignani C., Toscani G.: Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Statist. Phys. 111, 403–417 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bobylev A.V., Carrillo J.A., Gamba I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Statist. Phys. 98, 743–773 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bobylev A.V., Gamba I.M., Panferov V.A.: Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Statist. Phys. 116, 1651–1682 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Brilliantov N., Pöschel T.: Kinetic theory of granular gases. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  8. Cercignani C., Illner R., Stoica C.: On diffusive equilibria in generalized kinetic theory. J. Statist. Phys. 105, 337–352 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chae M., Ha S.Y.: Stability estimates of the Boltzmann equation with quantum effects. Contin. Mech. Thermodyn. 17(7), 511–524 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Duan R.J., Yang T., Zhu C.J.: Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. DCDS-A 16(1), 253–277 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ernst M.H., Brito R.: High-energy tails for inelastic Maxwell models. Europhys. Lett. 58(2), 182–187 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  12. Esteban M.J., Perthame B.: On the modified Enskog equation for elastic and inelastic collisions, Models with spin. Ann. Inst. H. Poincare Anal. Non Linaire. 8, 289–308 (1991)

    MATH  MathSciNet  Google Scholar 

  13. Gamba I.M., Panferov V., Villani C.: On the Boltzmann equation for diffusively excited granular media. Commun. Math. Phys. 246, 503–541 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Glassey R.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  15. Guo Y.: The Vlasov-Poisson-Boltzmann system near vacuum. Commun. Math. Phys. 218(2), 293–313 (2001)

    Article  MATH  ADS  Google Scholar 

  16. Ha S.Y.: L 1 stability of the Boltzmann equation for the hard sphere model. Arch. Ration. Mech. Anal. 173, 25–42 (2004)

    Article  MathSciNet  Google Scholar 

  17. Ha S.Y.: Nonlinear functionals for the Boltzmann equation and uniform stability estimates. J. Differ. Eqn. 215, 178–205 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ha S.Y., Yun S.B.: Uniform L 1-stability estimate of the Boltzmann equation near a local Maxwellian. Physica D 220(1), 79–97 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Hayakawa H.: Hydrodynamics of driven granular gases. Phys. Rev. E 68, 031304 (2003)

    Article  ADS  Google Scholar 

  20. Illner R., Shinbrot M.: The Boltzmann equation, global existence for a rare gas in an infinite vacuum. Commun. Math. Phys. 95, 217–226 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Kaniel S., Shinbrot M.: The Boltzmann equation, uniqueness and local existence. Commun. Math. Phys. 58, 65–84 (1978)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Mischler S., Mouhot C., Ricard: Cooling process for inelastic Boltzmann equation for hard spheres, part I: The Cauchy problem. J. Stat. Phys. 124, 655–702 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Polewczak J.: Classical solution of the nonlinear Boltzmann equation in all R 3: asymptotic behavior of solutions. J. Stat. Phys. 50, 611–632 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Royden H.L.: Real Analysis, 3rd edn. Macmilan Publish Company, New York (1988)

    MATH  Google Scholar 

  25. Toscani G.: H-theorem and asymptotic trend of the solution for a rarefied gas in a vacuum. Arch. Rational Mech. Anal. 102, 231–241 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wu.

Additional information

Communicated by H. Spohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z. L1 and BV-type stability of the inelastic Boltzmann equation near vacuum. Continuum Mech. Thermodyn. 22, 239–249 (2010). https://doi.org/10.1007/s00161-009-0127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-009-0127-z

Keywords

Navigation