Skip to main content
Log in

Solutions of the moment hierarchy in the kinetic theory of Maxwell models

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the Maxwell interaction model the collision rate is independent of the relative velocity of the colliding pair and, as a consequence, the collisional moments are bilinear combinations of velocity moments of the same or lower order. In general, however, the drift term of the Boltzmann equation couples moments of a given order to moments of a higher order, thus preventing the solvability of the moment hierarchy, unless approximate closures are introduced. On the other hand, there exist a number of states where the moment hierarchy can be recursively solved, the solution generally exposing non-Newtonian properties. The aim of this paper is to present an overview of results pertaining to some of those states, namely the planar Fourier flow (without and with a constant gravity field), the planar Couette flow, the force-driven Poiseuille flow, and the uniform shear flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Acedo L., Santos A., Bobylev A.V.: On the derivation of a high-velocity tail from the Boltzmann–Fokker–Planck equation for shear flow. J. Stat. Phys. 109, 1027–1050 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alaoui M., Santos A.: Poiseuille flow driven by an external force. Phys. Fluids A 4, 1273–1282 (1992)

    Article  MATH  ADS  Google Scholar 

  4. Alterman Z., Frankowski K., Pekeris C.L.: Eigenvalues and eigenfunctions of the linearized Boltzmann collision operator for a Maxwell gas and for a gas of rigid spheres. Astrophys. J. Suppl. Ser. 7, 291–331 (1962)

    Article  ADS  Google Scholar 

  5. Ames Research Staff: Equations, Tables and Charts for Compressible Flow. Tech. Rep. 1135, U.S. Ames Aeronautical Laboratory, Moffett Field, CA (1953)

  6. Anderson, H.L. (ed.): A Physicist’s Desk Reference. American Institute of Physics, New York (1989)

    Google Scholar 

  7. Andries P., Le Tallec P., Perlat J.P., Perthame B.: The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B/Fluids 19, 813–830 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aoki K., Takata S., Nakanishi T.: A Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force. Phys. Rev. E 65, 026 315 (2002)

    Article  Google Scholar 

  9. Asmolov E., Makashev N.K., Nosik V.I.: Heat transfer between parallel plates in a gas of Maxwellian molecules. Sov. Phys. Dokl. 24, 892–894 (1979)

    MATH  ADS  Google Scholar 

  10. Ben-Naim E., Krapivsky P.L.: The inelastic Maxwell model. In: Pöschel, T., Luding, S. (eds) Granular Gases, Springer, Berlin (2003)

    Google Scholar 

  11. Bhatnagar P.L., Gross E.P., Krook M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  ADS  Google Scholar 

  12. Bird G.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  13. Bobylev A.V.: The Chapman–Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 27, 29–31 (1981)

    ADS  Google Scholar 

  14. Brey J.J., Santos A., Dufty J.W.: Heat and momentum transport far from equilibrium. Phys. Rev. A 36, 2842–2849 (1987)

    Article  ADS  Google Scholar 

  15. Brush S.G.: Kinetic Theory, vols. I–III. Pergamon Press, London (1965)

    Google Scholar 

  16. Brush S.G.: The Kind of Motion we Call Heat, vols. I and II. North-Holland, Amsterdam (1976)

    Google Scholar 

  17. Brush S.G.: The Kinetic Theory of Gases. An Anthology of Classic Papers with Historical Commentary. Imperial College Press, London (2003)

    Google Scholar 

  18. Cercignani C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    MATH  Google Scholar 

  19. Cercignani C.: Mathematical Methods in Kinetic Theory. Plenum Press, New York (1990)

    MATH  Google Scholar 

  20. Cercignani C., Stefanov S.: Bénard’s instability in kinetic theory. Transp. Theory Stat. Phys. 21, 371–381 (1992)

    Article  MATH  ADS  Google Scholar 

  21. Chapman S., Cowling T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  22. Doi T., Santos A., Tij M.: Numerical study of the influence of gravity on the heat conductivity on the basis of kinetic theory. Phys. Fluids 11, 3553–3559 (1999)

    Article  MATH  ADS  Google Scholar 

  23. Dorfman J.R., van Beijeren H.: The kinetic theory of gases. In: Berne, B.J. (eds) Statistical Mechanics, Part B, pp. 65–179. Plenum, New York (1977)

    Google Scholar 

  24. Dufty J.W.: Kinetic theory of fluids far from equilibrium—exact results. In: Lópezde Haro, M., Varea, C. (eds) Lectures on Thermodynamics and Statistical Mechanics, pp. 166–181. World Scientific, Singapore (1990)

    Google Scholar 

  25. Ernst M.H.: Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep. 78, 1–171 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  26. Esposito R., Lebowitz J.L., Marra R.: A hydrodynamic limit of the stationary Boltzmann equation in a slab. Commun. Math. Phys. 160, 49–80 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Galkin V.S.: Exact solution of the system of equations of the second-order kinetic moments for a two-scale homoenergetic affine monatomic gas flow. Fluid Dyn. 30, 467–476 (1995)

    Article  MATH  Google Scholar 

  28. Gallis M.A., Torczynski J.R., Rader D.J., Tij M., Santos A.: Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow. Phys. Fluids 18, 017, 104 (2006)

    Article  Google Scholar 

  29. Gallis M.A., Torczynski J.R., Rader D.J., Tij M., Santos A.: Analytical and numerical normal solutions of the Boltzmann equation for highly nonequilibrium Fourier and Couette flows. In: Ivanov, M.S., Rebrov, A.K. (eds) Rarefied Gas Dynamics: 25th International Symposium on Rarefied Gas Dynamics, pp. 251–256. Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk (2007)

    Google Scholar 

  30. García-Colín L.S., Velasco R.M., Uribe F.J.: Beyond the Navier–Stokes equations: Burnett hydrodynamics. Phys. Rep. 465, 149–189 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  31. Garzó V., Lópezde Haro M.: Nonlinear transport for a dilute gas in steady Couette flow. Phys. Fluids 9, 776–787 (1997)

    Article  ADS  Google Scholar 

  32. Garzó V., Santos A.: Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer, Dordrecht (2003)

    MATH  Google Scholar 

  33. Goldstein H.: Classical Mechanics. Addison-Wesley, Reading (1959)

    Google Scholar 

  34. Gorban A.N., Karlin I.V.: Short-wave limit of hydrodynamics: a soluble example. Phys. Rev. Lett. 77, 282–285 (1996)

    Article  ADS  Google Scholar 

  35. Grad H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  36. Grad H.: Asymptotic theory of the Boltzmann equation. Phys. Fluids 6, 147–181 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series, and Products. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  38. Hendriks E.M., Nieuwenhuizen T.M.: Solution to the nonlinear Boltzmann equation for Maxwell models for nonisotropic initial conditions. J. Stat. Phys. 29, 591–615 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  39. Hess S., Malek Mansour M.: Temperature profile of a dilute gas undergoing a plane Poiseuille flow. Physica A 272, 481–496 (1999)

    Article  ADS  Google Scholar 

  40. Holway L.H.: New statistical models for kinetic theory: methods of construction. Phys. Fluids 9, 1658–1673 (1966)

    Article  ADS  Google Scholar 

  41. Ikenberry E., Truesdell C.: On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory, I. J. Rat. Mech. Anal. 5, 1–54 (1956)

    MathSciNet  Google Scholar 

  42. Kadanoff L.P., McNamara G.R., Zanetti G.: A Poiseuille viscometer for lattice gas automata. Complex Syst. 1, 791–803 (1987)

    MathSciNet  Google Scholar 

  43. Kadanoff L.P., McNamara G.R., Zanetti G.: From automata to fluid flow: comparisons of simulation and theory. Phys. Rev. A 40, 4527–4541 (1989)

    Article  ADS  Google Scholar 

  44. Karlin I.V., Dukek G., Nonnenmacher T.F.: Invariance principle for extension of hydrodynamics: nonlinear viscosity. Phys. Rev. E 55, 1573–1576 (1997)

    Article  ADS  Google Scholar 

  45. Kim C.S., Dufty J.W., Santos A., Brey J.J.: Analysis of nonlinear transport in Couette flow. Phys. Rev. A 40, 7165–7174 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  46. Kim C.S., Dufty J.W., Santos A., Brey J.J.: Hilbert-class or “normal” solutions for stationary heat flow. Phys. Rev. A 39, 328–338 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  47. Koura K., Matsumoto H.: Variable soft sphere molecular model for inverse-power-law or Lennard–Jones potential. Phys. Fluids A 3, 2459–2465 (1991)

    Article  MATH  ADS  Google Scholar 

  48. Koura K., Matsumoto H.: Variable soft sphere molecular model for air species. Phys. Fluids A 4, 1083–1085 (1992)

    Article  ADS  Google Scholar 

  49. Lees A.W., Edwards S.F.: The computer study of transport processes under extreme conditions. J. Phys. C 5, 1921–1929 (1972)

    Article  ADS  Google Scholar 

  50. Makashev N.K., Nosik V.I.: Steady Couette flow (with heat transfer) of a gas of Maxwellian molecules. Sov. Phys. Dokl. 25, 589–591 (1981)

    ADS  Google Scholar 

  51. Malek Mansour M., Baras F., Garcia A.L.: On the validity of hydrodynamics in plane Poiseuille flows. Physica A 240, 255–267 (1997)

    Article  ADS  Google Scholar 

  52. McLennan J.A.: Introduction to Non-Equilibrium Statistical Mechanics. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  53. Montanero J.M., Alaoui M., Santos A., Garzó V.: Monte Carlo simulation of the Boltzmann equation for steady Fourier flow. Phys. Rev. A 49, 367–375 (1994)

    ADS  Google Scholar 

  54. Montanero J.M., Garzó V.: Nonlinear Couette flow in a dilute gas: comparison between theory and molecular-dynamics simulation. Phys. Rev. E 58, 1836–1842 (1998)

    Article  ADS  Google Scholar 

  55. Montanero J.M., Santos A.: Nonequilibrium entropy of a sheared gas. Physica A 225, 7–18 (1996)

    Article  ADS  Google Scholar 

  56. Montanero J.M., Santos A., Garzó V.: Monte Carlo simulation of the Boltzmann equation for uniform shear flow. Phys. Fluids 8, 1981–1983 (1996)

    Article  MATH  ADS  Google Scholar 

  57. Montanero J.M., Santos A., Garzó V.: Singular behavior of the velocity moments of a dilute gas under uniform shear flow. Phys. Rev. E 53, 1269–1272 (1996)

    Article  ADS  Google Scholar 

  58. Montanero J.M., Santos A., Garzó V.: Distribution function for large velocities of a two-dimensional gas under shear flow. J. Stat. Phys. 88, 1165–1181 (1997)

    Article  MATH  ADS  Google Scholar 

  59. Montanero J.M., Santos A., Garzó V.: Monte Carlo simulation of nonlinear Couette flow in a dilute gas. Phys. Fluids 12, 3060–3073 (2000)

    Article  ADS  Google Scholar 

  60. Nosik V.I.: Heat transfer between parallel plates in a mixture of gases of Maxwellian molecules. Sov. Phys. Dokl. 25, 495–497 (1981)

    ADS  Google Scholar 

  61. Nosik V.I.: Degeneration of the Chapman–Enskog expansion in one-dimensional motions of Maxwellian molecule gases. In: Belotserkovskii, O.M., Kogan, M.N., Kutateladze, S.S., Rebrov, A.K. (eds) Rarefied Gas Dynamics, vol. 13, pp. 237–244. Plenum Press, New York (1983)

    Google Scholar 

  62. Résibois P., de Leener M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)

    Google Scholar 

  63. Risso D., Cordero P.: Dilute gas Couette flow: theory and molecular dynamics simulation. Phys. Rev. E 56, 489–498 (1997)

    Article  ADS  Google Scholar 

  64. Risso D., Cordero P.: Erratum: Dilute gas Couette flow: theory and molecular dynamics simulation. Phys. Rev. E 57, 7365–7366 (1998)

    Article  ADS  Google Scholar 

  65. Risso D., Cordero P.: Generalized hydrodynamics for a Poiseuille flow: theory and simulations. Phys. Rev. E 58, 546–553 (1998)

    Article  ADS  Google Scholar 

  66. Sabbane M., Tij M.: Calculation algorithm for the collisional moments of the Boltzmann equation for Maxwell molecules. Comp. Phys. Comm. 149, 19–29 (2002)

    Article  ADS  Google Scholar 

  67. Sabbane M., Tij M., Santos A.: Maxwellian gas undergoing a stationary Poiseuille flow in a pipe. Physica A 327, 264–290 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  68. Santos A.: Nonlinear viscosity and velocity distribution function in a simple longitudinal flow. Phys. Rev. E 62, 6597–6607 (2000)

    Article  ADS  Google Scholar 

  69. Santos A.: Comments on nonlinear viscosity and Grad’s moment method. Phys. Rev. E 67, 053201 (2003)

    Article  ADS  Google Scholar 

  70. Santos, A., Brey, J.J., Dufty, J.W.: An exact solution to the inhomogeneous nonlinear Boltzmann equation. Tech. rep., University of Florida (1987)

  71. Santos A., Brey J.J., Garzó V.: Kinetic model for steady heat flow. Phys. Rev. A 34, 5047–5050 (1986)

    Article  ADS  Google Scholar 

  72. Santos A., Brey J.J., Kim C.S., Dufty J.W.: Velocity distribution for a gas with steady heat flow. Phys. Rev. A 39, 320–327 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  73. Santos A., Garzó V.: Exact moment solution of the Boltzmann equation for uniform shear flow. Physica A 213, 409–425 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  74. Santos A., Garzó V.: Exact non-linear transport from the Boltzmann equation. In: Harvey, J., Lord, G. (eds.) Rarefied Gas Dynamics, vol. 19, pp. 13–22. Oxford University Press, Oxford (1995)

    Google Scholar 

  75. Santos A., Garzó V., Brey J.J., Dufty J.W.: Singular behavior of shear flow far from equilibrium. Phys. Rev. Lett. 71, 3971–3974 (1993)

    Article  ADS  Google Scholar 

  76. Santos A., Tij M.: Gravity-driven Poiseuille Flow in Dilute Gases. Elastic and Inelastic Collisions, chap. 5, pp. 53–67. Nova Science, New York (2006)

    Google Scholar 

  77. Söderholm, L.H.: On the Relation between the Hilbert and Chapman-Enskog Expansions. In: Abe, T. (ed.) Rarefied Gas Dynamics: Proceedings of the 26th International Symposium on Rarefied Gas Dynamics, pp. 81–86. AIP Conference Proceedings, vol. 1084, Melville, NY (2009)

  78. Sone Y., Aoki K., Sugimoto H.: The Bénard problem for a rarefied gas: formation of steady flow patterns and stability of array of rolls. Phys. Fluids 9, 3898–3914 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  79. Struchtrup H.: Macroscopic Transport Equations for Rarefied Gas Flows. Springer, Berlin (2005)

    MATH  Google Scholar 

  80. Struchtrup H., Torrilhon M.: Higher-order effects in rarefied channel flows. Phys. Rev. E 78, 046 301 (2008)

    MathSciNet  Google Scholar 

  81. Taheri P., Torrilhon M., Struchtrup H.: Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations. Phys. Fluids 21, 017 102 (2009)

    Article  Google Scholar 

  82. Tahiri E.E., Tij M., Santos A.: Monte Carlo simulation of a hard-sphere gas in the planar Fourier flow with a gravity field. Mol. Phys. 98, 239–248 (2000)

    Article  ADS  Google Scholar 

  83. Tij M., Garzó V., Santos A.: Nonlinear heat transport in a dilute gas in the presence of gravitation. Phys. Rev. E 56, 6729–6734 (1997)

    Article  ADS  Google Scholar 

  84. Tij M., Garzó V., Santos A.: Influence of gravity on nonlinear transport in the planar Couette flow. Phys. Fluids 11, 893–904 (1999)

    Article  MATH  ADS  Google Scholar 

  85. Tij M., Garzó V., Santos A.: On the influence of gravity on the thermal conductivity. In: Brun, R., Campargue, R., Gatignol, R., Lengrand, J.C. (eds) Rarefied Gas Dynamics., pp. 239–246. Cépaduès Éditions, Toulouse (1999)

    Google Scholar 

  86. Tij M., Sabbane M., Santos A.: Nonlinear Poiseuille flow in a gas. Phys. Fluids 10, 1021–1027 (1998)

    Article  ADS  Google Scholar 

  87. Tij M., Santos A.: Perturbation analysis of a stationary nonequilibrium flow generated by an external force. J. Stat. Phys. 76, 1399–1414 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  88. Tij M., Santos A.: Combined heat and momentum transport in a dilute gas. Phys. Fluids 7, 2858–2866 (1995)

    Article  MATH  ADS  Google Scholar 

  89. Tij M., Santos A.: Non-Newtonian Poiseuille flow of a gas in a pipe. Physica A 289, 336–358 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  90. Tij M., Santos A.: Poiseuille flow in a heated granular gas. J. Stat. Phys. 117, 901–928 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  91. Todd B.D., Evans D.J.: Temperature profile for Poiseuille flow. Phys. Rev. E 55, 2800–2807 (1997)

    Article  ADS  Google Scholar 

  92. Travis K.P., Todd B.D., Evans D.J.: Poiseuille flow of molecular fluids. Physica A 240, 315–327 (1997)

    Article  ADS  Google Scholar 

  93. Tritton D.J.: Physical Fluid Dynamics. Oxford University Press, Oxford (1988)

    Google Scholar 

  94. Truesdell C.: On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory, II. J. Rat. Mech. Anal. 5, 55–128 (1956)

    MathSciNet  Google Scholar 

  95. Truesdell C., Muncaster R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic Press, New York (1980)

    Google Scholar 

  96. Uribe F.J., Garcia A.L.: Burnett description for plane Poiseuille flow. Phys. Rev. E 60, 4063–4078 (1999)

    Article  ADS  Google Scholar 

  97. Welander P.: On the temperature jump in a rarefied gas. Arkiv Fysik 7, 507–553 (1954)

    MathSciNet  Google Scholar 

  98. Xu K.: Super-Burnett solutions for Poiseuille flow. Phys. Fluids 15, 2077–2080 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  99. Zheng Y., Garcia A.L., Alder B.J.: Comparison of kinetic theory and hydrodynamics for Poiseuille flow. J. Stat. Phys. 109, 495–505 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Santos.

Additional information

Communicated by M. Torrilhon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, A. Solutions of the moment hierarchy in the kinetic theory of Maxwell models. Continuum Mech. Thermodyn. 21, 361–387 (2009). https://doi.org/10.1007/s00161-009-0113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-009-0113-5

Keywords

PACS

Navigation