Skip to main content
Log in

Polymer Networks with Slip-links: 2. Constitutive Equations for a Cross-linked Network

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Stress–strain relations are derived for the mechanical response of elastomers at arbitrary three-dimensional deformations with finite strains. An elastomer is treated as an incompressible network of chains bridged by permanent (chemical cross-links and physical cross-links whose lifetime exceeds the characteristic time of deformation) and temporary (entanglements modeled as slip-links) junctions. Two types of chains are introduced in the network to distinguish between permanent and temporary nodes. Type-I chains have free ends, and their motion at the micro-level is constrained by a random number of slip-links. Type-II chains are Gaussian chains permanently connected to the network. Concentration of type-I chains is fixed, while the number of type-II chains per unit volume can change under deformation. The governing equations involve two (networks with constant concentrations of type-II chains) or three (networks where the content of type-II chains is affected by mechanical factors) material parameters. These parameters are found by fitting observations on rubbers, thermoplastic–elastomers, and thermoplastic-elastomer composites. Good agreement is demonstrated between the experimental data in uniaxial tensile tests and the results of numerical simulation at elongations up to 1,000%. It is shown that the adjustable parameters are affected by chemical composition and molecular architecture of polymers in a physically plausible way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drozdov, A.D.: Polymer networks with slip-links: 1. Constitutive equations for an uncross-linked network. Continuum. Mech. Thermodyn. (2006) (in press)

  2. Holden G. (2000). Understanding Thermoplastic Elastomers. Hanser/Gardner Publications, Munich

    Google Scholar 

  3. Holden G., Kricheldorf H.R., Quirk R.P. (eds) (2004). Thermoplastic Elastomers, 3rd edn. Hanser/Gardner Publ, Munich

    Google Scholar 

  4. Spontak R.J., Patel N.P. (2000). Thermoplastic elastomers: fundamentals and applications. Curr. Opin. Coll. Interface Sci. 5:334–341

    Google Scholar 

  5. Metzler R., Hanke A., Dommersnes P.G., Kantor Y., Kardar M. (2002). Tightness of slip-linked polymer chains. Phys. Rev. E 65: 061103

    Article  Google Scholar 

  6. Masubuchi Y., Takimoto J.-I., Koyama K., Ianniruberto G., Marrucci G., Greco F. (2001). Brownian simulations of a network of reptating primitive chains. J. Chem. Phys. 115:4387–4394

    Article  Google Scholar 

  7. Ball R.C., Doi M., Edwards S.F., Warner M. (1981). Elasticity of entangled networks. Polymer 22:1010–1018

    Article  Google Scholar 

  8. Bensason S., Stepanov E.V., Chum S., Hiltner A., Baer E. (1997). Deformation of elastomeric ethylene-octene copolymers. Macromolecules 30:2436–2444

    Article  Google Scholar 

  9. Haward R.N. (1999). The application of non-Gaussian chain statistics to ultralow density polyethylenes and other thermoplastic elastomers. Polymer 40:5821–5832

    Article  Google Scholar 

  10. Lambert-Diani J., Rey C. (1999). New phenomenological behavior laws for rubbers and thermoplastic elastomers. Eur. J. Mech. A/Solids 18:1027–1043

    Article  MATH  Google Scholar 

  11. Boyce M.C., Kear K., Socrate S., Shaw K. (2001). Deformation of thermoplastic vulcanizates. J. Mech. Phys. Solids 49:1073–1098

    Article  MATH  Google Scholar 

  12. Marzocca A.J., Goyanes S. (2004). An analysis of the influence of the accelerator/sulfur ratio in the cure reaction and the uniaxial stress–strain behavior of SBR. J. Appl. Polym. Sci. 91:2601–2609

    Article  Google Scholar 

  13. Montoya M., Tomba J.P., Carella J.M., Gobernado-Mitre M.I. (2004). Physical characterization of commercial polyolefinic thermoplastic elastomers. Eur. Polym. J. 40:2757–2766

    Article  Google Scholar 

  14. Sheth J.P., Xu J., Wilkes G.L. (2003). Solid state structure–property behavior of semicrystalline poly(ether-block-amide) PEBAX thermoplastic elastomers. Polymer 44:743–756

    Article  Google Scholar 

  15. Saikrasun S., Bualek-Limcharoen S., Kohjiya S., Urayama K. (2005). Anisotropic mechanical properties of thermoplastic elastomers in situ reinforced with thermotropic liquid-crystalline polymer fibres revealed by biaxial deformations. J. Polym. Sci. [B]: Polym Phys 43:135–144

    Google Scholar 

  16. Schmaltz H., Abetz V., Lange R., Soliman M. (2001). New thermoplastic elastomers by incorporation of nonpolar soft segments in PBT-based copolyesters. Macromolecules 34:795–800

    Article  Google Scholar 

  17. Rajan G.S., Vu Y.T., Mark J.E., Myers C.L. (2004). Thermal and mechanical properties of polypropylene in the thermoplastic elastomeric state. Eur. Polym. J. 40:63–71

    Article  Google Scholar 

  18. Schonherr H., Wiyatno W., Pople J., Frank C.W., Fuller G.G., Gast A.P., Waymouth R.M. (2002). Morphology of thermoplastic elastomers: elastomeric polypropylene. Macromolecules 35:2654–2666

    Article  Google Scholar 

  19. Bensason S., Minick J., Moet A., Chum S., Hiltner A., Baer E. (1996). Classification of homogeneous ethylene-octene copolymers based on comonomer content. J. Polym. Sci. [B]: Polym. Phys. 34:1301–1315

    Google Scholar 

  20. Gabrielse W., Soliman M., Dijkstra K. (2001). Microstructure and phase behavior of block copoly(ether ester) thermoplastic elastomers. Macromolecules 34:1685–1693

    Article  Google Scholar 

  21. Gabrielse W., van Guldener V., Schmalz H., Abetz V., Lange R. (2002). Morphology and molecular miscibility of segmented copoly(ether ester)s with improved elastic properties as studied by solid state NMR. Macromolecules 35:6946–6952

    Article  Google Scholar 

  22. Litvinov V.M., Bertmer M., Gasper L., Demco D.E., Blumich B. (2003). Phase composition of block copoly(ether ester) thermoplastic elastomers studied by solid-state NMR techniques. Macromolecules 36:7598–7606

    Article  Google Scholar 

  23. Schmalz H., van Guldener V., Gabrielse W., Lange R., Abetz V. (2002). Morphology, surface structure, and elastic properties of PBT-based copolyesters with PEO-b-PEB-b-PEO triblock copolymer soft segments. Macromolecules 35:5491–5499

    Article  Google Scholar 

  24. Kwon Y., Antony P., Paulo C., Puskas J.E. (2002). Arborescent polyisobutylene–polystyrene block copolymers—A new class of thermoplastic elastomers. Polymer Prepr. ACS 43(1):266–267

    Google Scholar 

  25. Puskas J.E., Chen Y. (2004). Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement. Biomacromolecules 5:1141–1154

    Article  PubMed  Google Scholar 

  26. Unal S., Yilgor I., Yilgor E., Sheth J.P., Wilkes G.L., Long T.E. (2004). A new generation of highly branched polymers: hyperbranched, segmented poly(urethane urea) elastomers. Macromolecules 37:7081–7084

    Article  Google Scholar 

  27. Kelarakis A., Yoon K., Sics I., Somani R.H., Hsiao B.S., Chu B. (2005). Uniaxial deformation of an elastomer composite containing modified carbon nanofibres by in situ synchrotron X-ray diffraction. Polymer 46:5103–5117

    Article  Google Scholar 

  28. Sheng Y.-J., Lai P.-Y., Tsao H.-K. (2000). Deformation of a stretched polymer knot. Phys. Rev. E. 61:2895–2901

    Article  Google Scholar 

  29. Lai P.-Y. (2002). Dynamics of polymer knots at equilibrium. Phys. Rev. E. 66:021805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Drozdov.

Additional information

Communicated by A. DeSimone

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozdov, A.D. Polymer Networks with Slip-links: 2. Constitutive Equations for a Cross-linked Network. Continuum Mech. Thermodyn. 18, 171–193 (2006). https://doi.org/10.1007/s00161-006-0021-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-006-0021-x

Keywords

PACS

Navigation