Skip to main content
Log in

Polymer Networks with Slip-links: 1. Constitutive Equations for an Uncross-linked Network

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Constitutive equations are derived for the mechanical response of polymers at three-dimensional deformations with finite strains. A polymer is treated as an incompressible network of flexible chains with free ends whose motion at the micro-level is constrained by a random number of slip-links. The slip-links move affinely with macro-deformation, whereas chains can slide with respect to slip-links. When a free end of a chain slides through a slip-link, the slip-link disappears. Stress–strain relations are developed by using the laws of thermodynamics. They involve only one material constant with a transparent physical meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treloar L.R.G. (1975) The physics of rubber elasticity. Clarendon Press, Oxford

    Google Scholar 

  2. Ward I.M. (1983) Mechanical properties of solid polymers. Wiley, New-York

    Google Scholar 

  3. Erman B., Mark J.E. (1998) Structures and properties of rubberlike networks. Oxford University Press, Oxford

    Google Scholar 

  4. Edwards S.F., Vilgis T.A. (1988) The tube model theory of rubber elasticity. Rep. Prog. Phys. 51, 243–297

    Article  MathSciNet  Google Scholar 

  5. Yeoh O.H., Fleming P.D. (1997) A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. Part B: Polym. Phys. 35, 1919–1931

    Article  Google Scholar 

  6. Boyce M.C., Arruda E.M. (2000) Constitutive models of rubber elasticity A review. Rubber Chem. Technol. 73, 504–523

    Google Scholar 

  7. Rubinstein M., Panyukov S. (2002) Elasticity of polymer networks. Macromolecules 35, 6670–6686

    Article  Google Scholar 

  8. Elias-Zuniga A., Beatty M.F. (2002) Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Engng. Sci. 40, 2265–2294

    Article  MathSciNet  Google Scholar 

  9. Beatty M.F. (2003) An average-stretch full-network model for rubber elasticity. J. Elasticity 70, 65–86

    Article  MATH  MathSciNet  Google Scholar 

  10. Hartmann S., Tschope T., Schreiber L., Haupt P. (2003) Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements. Eur. J. Mech. A/Solids 22, 309–324

    MATH  Google Scholar 

  11. Attard M.M., Hunt G.W. (2004) Hyperelastic constitutive modeling under finite strain. Int. J. Solids Struct. 41, 5327–5350

    Article  MATH  Google Scholar 

  12. Miehe C., Goktepe S., Lulei F. (2004) A micro-macro approach to rubber-like materials. I: The non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660

    Article  MATH  MathSciNet  Google Scholar 

  13. Miroshnichenko D., Green W.A., Turner D.M. (2005) Composite and filament models for the mechanical behavior of elastomeric materials. J. Mech. Phys. Solids 53, 748–770

    Article  Google Scholar 

  14. Doi M., Edwards S.F. (1978) Dynamics of concentrated polymer systems. 2. Molecular motion under flow. Faraday Trans. II 74, 1802–1817

    Article  Google Scholar 

  15. Shanbhag S., Larson R.G. (2004) A slip-link model of branch-point motion in entangled polymers. Macromolecules 37, 8160–8166

    Article  Google Scholar 

  16. Marrucci G., de Cindio B. (1980) The stress relaxation of molten PMMA at large deformations and its theoretical interpretation. Rheol. Acta. 19, 68–75

    Article  Google Scholar 

  17. Ball R.C., Doi M., Edwards S.F., Warner M. (1981) Elasticity of entangled networks. Polymer 22, 1010–1018

    Article  Google Scholar 

  18. Wagner M.H., Schaeffer J. (1992) Nonlinear strain measures for general biaxial extension of polymer melts. J. Rheol. 36, 1–26

    Article  Google Scholar 

  19. Marrucci G., Greco F., Ianniruberto G. (2000) Simple strain measure for entangled polymers. J. Rheol. 44, 845–854

    Article  Google Scholar 

  20. Greco F. (2002) The stress tensor in entangled polymers. Phys. Rev. Lett. 88, 108301

    Article  Google Scholar 

  21. Greco F. (2004) Entangled polymeric liquids: nonstandard statistical thermodynamics of a subchain between entanglement points and a new calculation of the strain measure tensor. Macromolecules 37, 10079–10088

    Article  MathSciNet  Google Scholar 

  22. Schieber J.D. (2003) Fluctuations in entanglements of polymer liquids. J. Chem. Phys. 118, 5162–5166

    Article  Google Scholar 

  23. Doi M., Edwards S.F. (1986) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  24. Oberhettinger F., Badii L. (1973) Tables of Laplace Transforms. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Drozdov.

Additional information

Communicated by A. DeSimone

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozdov, A.D. Polymer Networks with Slip-links: 1. Constitutive Equations for an Uncross-linked Network. Continuum Mech. Thermodyn. 18, 157–170 (2006). https://doi.org/10.1007/s00161-006-0020-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-006-0020-y

Keywords

Pacs

Navigation