Skip to main content
Log in

Imaging the heart of astrophysical objects with optical long-baseline interferometry

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

The number of publications of aperture-synthesis images based on optical long-baseline interferometry measurements has recently increased due to easier access to visible and infrared interferometers. The interferometry technique has now reached a technical maturity level that opens new avenues for numerous astrophysical topics requiring milli-arcsecond model-independent imaging. In writing this paper our motivation was twofold: (1) review and publicize emblematic excerpts of the impressive corpus accumulated in the field of optical interferometry image reconstruction; (2) discuss future prospects for this technique by selecting four representative astrophysical science cases in order to review the potential benefits of using optical long-baseline interferometers.

For this second goal we have simulated interferometric data from those selected astrophysical environments and used state-of-the-art codes to provide the reconstructed images that are reachable with current or soon-to-be facilities. The image-reconstruction process was “blind” in the sense that reconstructors had no knowledge of the input brightness distributions. We discuss the impact of optical interferometry in those four astrophysical fields. We show that image-reconstruction software successfully provides accurate morphological information on a variety of astrophysical topics and review the current strengths and weaknesses of such reconstructions.

We investigate how to improve image reconstruction and the quality of the image possibly by upgrading the current facilities. We finally argue that optical interferometers and their corresponding instrumentation, existing or to come, with six to ten telescopes, should be well suited to provide images of complex sceneries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. ISI belongs to the same fraternity but operates in heterodyne mode and will therefore not be discussed.

  2. This choice, obviously not exhaustive, should not hide the wealth of astronomical topics requesting milli-arcsecond resolution imaging: Cepheids, magnetic, Be, O, supermassive stars, stellar mass loss, jet formation, dynamics of close stellar clusters, SMBH galaxies etc.

  3. With the notable exception of the heterodyne ISI interferometer (Townes and Wishnow 2008).

  4. As of December 2011.

  5. http://exoplanet.eu.

  6. Navy Prototype Optical Interferometer.

  7. The JMMC is a network of French laboratories specialized in optical interferometry techniques.

  8. This addition is feasible since there is space on the mountain top for the telescope and space in the lab for the delay line.

  9. The MIRC 6-T upgrade was successfully completed in Summer 2012.

  10. A warning to researchers that believe building up many 3-telescope observations is the best approach: it takes 20 × longer to build up full closure-phase coverage one triplet at a time for a 6-telescope interferometer compared to schemes which measure all baselines!

  11. Available at http://www.jmmc.fr/aspro.

  12. Available at http://www.maumae.net/yorick/doc/index.php.

References

  • Adams FC, Lada CJ, Shu FH (1987) Spectral evolution of young stellar objects. Astrophys J 312:788–806. doi:10.1086/164924

    ADS  Google Scholar 

  • Allende Prieto C, Lambert DL, Asplund M (2001) The forbidden abundance of oxygen in the Sun. Astrophys J Lett 556:L63–L66. arXiv:astro-ph/0106360. doi:10.1086/322874

    ADS  Google Scholar 

  • Antonucci R (1993) Unified models for active galactic nuclei and quasars. Annu Rev Astron Astrophys 31:473–521. doi:10.1146/annurev.aa.31.090193.002353

    ADS  Google Scholar 

  • Antonucci R (2002) Polarization insights for active galactic nuclei. In: Trujillo-Bueno J, Moreno-Insertis F, Sánchez F (eds) Astrophysical spectropolarimetry, pp 151–175

    Google Scholar 

  • Armstrong JT, Mozurkewich D, Pauls TA, Hajian AR (1998a) Bootstrapping the NPOI: keeping long baselines in phase by tracking fringes on short baselines. In: Reasenberg RD (ed) Society of photo-optical instrumentation engineers (SPIE) conference series, vol 3350, pp 461–466

    Google Scholar 

  • Armstrong JT, Mozurkewich D, Rickard LJ, Hutter DJ, Benson JA, Bowers PF, Elias NM II, Hummel CA, Johnston KJ, Buscher DF, Clark JH III, Ha L, Ling LC, White NM, Simon RS (1998b) The navy prototype optical interferometer. Astrophys J 496:550. doi:10.1086/305365

    ADS  Google Scholar 

  • Baldwin JE, Haniff CA (2002) The application of interferometry to optical astronomical imaging. Philos Trans R Soc Lond Ser A 360:969

    ADS  Google Scholar 

  • Baldwin JE, Haniff CA, Mackay CD, Warner PJ (1986) Closure phase in high-resolution optical imaging. Nature 320:595–597. doi:10.1038/320595a0

    ADS  Google Scholar 

  • Baldwin JE, Beckett MG, Boysen RC, Burns D, Buscher DF, Cox GC, Haniff CA, Mackay CD, Nightingale NS, Rogers J, Scheuer PAG, Scott TR, Tuthill PG, Warner PJ, Wilson DMA, Wilson RW (1996) The first images from an optical aperture synthesis array: mapping of Capella with COAST at two epochs. Astron Astrophys 306:L13

    ADS  Google Scholar 

  • Baron F, Young JS (2008) Image reconstruction at Cambridge University. SPIE 7013:E121. doi:10.1117/12.789115

    ADS  Google Scholar 

  • Bate MR, Lubow SH, Ogilvie GI, Miller KA (2003) Three-dimensional calculations of high- and low-mass planets embedded in protoplanetary discs. Mon Not R Astron Soc 341:213–229. doi:10.1046/j.1365-8711.2003.06406.x. arXiv:astro-ph/0301154

    ADS  Google Scholar 

  • Beckwith SVW, Sargent AI, Chini RS, Güsten R (1990) A survey for circumstellar disks around young stellar objects. Astron J 99:924–945. doi:10.1086/115385

    ADS  Google Scholar 

  • Benisty M, Tatulli E, Ménard F, Swain MR (2010) The complex structure of the disk around HD 100546. The inner few astronomical units. Astron Astrophys 511:A75. doi:10.1051/0004-6361/200913590. arXiv:1001.2491

    ADS  Google Scholar 

  • Benisty M, Renard S, Natta A, Berger JP, Massi F, Malbet F, Garcia PJV, Isella A, Mérand A, Monin JL, Testi L, Thiébaut E, Vannier M, Weigelt G (2011) A low optical depth region in the inner disk of the Herbig Ae star HR 5999. Astron Astrophys 531:A84. doi:10.1051/0004-6361/201016091. arXiv:1106.4150

    ADS  Google Scholar 

  • Benson JA, Hutter DJ, Elias PF, Bowers NM, Johnston KJ, Hajian AR, Armstrong JT, Mozurkewich D, TA Pauls, Rickard LJ, Hummel CA, White NM, Black D, Denison CS (1997) Multichannel optical aperture synthesis imaging of zeta1 URSAE majoris with the Navy prototype optical interferometer. Astron J 114:1221–1226. doi:10.1086/118554

    ADS  Google Scholar 

  • Berger JP, Zins G, Lazareff B, Lebouquin JB, Jocou L, Kern P, Millan-Gabet R, Traub W, Haguenauer P, Absil O, Augereau JC, Benisty M, Blind N, Bonfils X, Delboulbe A, Feautrier P, Germain M, Gillier D, Gitton P, Kiekebusch M, Knudstrup J, Lizon JL, Magnard Y, Malbet F, Maurel D, Menard F, Micallef M, Michaud L, Morel S, Moulin T, Popovic D, Perraut K, Rabou P, Rochat S, Roussel F, Roux A, Stadler E, Tatulli E (2010) PIONIER: a visitor instrument for VLTI. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 7734. doi:10.1117/12.858647. arXiv:1008.5352

    Google Scholar 

  • Blind N, Absil O, Le Bouquin JB, Berger JP, Chelli A (2011a) Optimized fringe sensors for the VLTI next generation instruments. Astron Astrophys 530:A121. doi:10.1051/0004-6361/201016222. arXiv:1104.1934

    ADS  Google Scholar 

  • Blind N, Boffin HMJ, Berger JP, Le Bouquin JB, Mérand A, Lazareff B, Zins G (2011b) An incisive look at the symbiotic star <ASTROBJ>SS Leporis</ASTROBJ>. Milli-arcsecond imaging with PIONIER/VLTI. Astron Astrophys 536:A55. doi:10.1051/0004-6361/201118036. arXiv:1112.1514

    ADS  Google Scholar 

  • Buscher DF (1994) Direct maximum-entropy image reconstruction from the bispectrum. In: Robertson JG, Tango WJ (eds) Very high angular resolution imaging. IAU symposium, vol 158, p 91

    Google Scholar 

  • Buscher DF, Baldwin JE, Warner PJ, Haniff CA (1990) Detection of a bright feature on the surface of Betelgeuse. Mon Not R Astron Soc 245:7–11

    ADS  Google Scholar 

  • Caffau E, Ludwig HG, Steffen M, Ayres TR, Bonifacio P, Cayrel R, Freytag B, Plez B (2008) The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmospheric models. Astron Astrophys 488:1031–1046. doi:10.1051/0004-6361:200809885. arXiv:0805.4398

    ADS  Google Scholar 

  • Chiavassa A, Plez B, Josselin E, Freytag B (2009) Radiative hydrodynamics simulations of red supergiant stars. I. interpretation of interferometric observations. Astron Astrophys 506:1351–1365. doi:10.1051/0004-6361/200911780. arXiv:0907.1860

    ADS  Google Scholar 

  • Chiavassa A, Haubois X, Young JS, Plez B, Josselin E, Perrin G, Freytag B (2010) Radiative hydrodynamics simulations of red supergiant stars. II. Simulations of convection on Betelgeuse match interferometric observations. Astron Astrophys 515:A12. doi:10.1051/0004-6361/200913907. arXiv:1003.1407

    ADS  Google Scholar 

  • Cornwell TJ, Wilkinson PN (1981) A new method for making maps with unstable radio interferometers. Mon Not R Astron Soc 196:1067–1086

    ADS  Google Scholar 

  • Cotton W, Monnier J, Baron F, Hofmann K, Kraus S, Weigelt G, Rengaswamy S, Thiébaut E, Lawson P, Jaffe W, Hummel C, Pauls T, Schmitt H, Tuthill P, Young J (2008) 2008 imaging beauty contest. SPIE 7013. doi:10.1117/12.788903

  • Creech-Eakman MJ, Romero V, Westpfahl D, Cormier C, Haniff C, Buscher D, Bakker E, Berger L, Block E, Coleman T, Festler P, Jurgenson C, King R, Klinglesmith D, McCord K, Olivares A, Parameswariah C, Payne I, Paz T, Ryan E, Salcido C, Santoro F, Selina R, Shtromberg A, Steenson J, Baron F, Boysen R, Coyne J, Fisher M, Seneta E, Sun X, Thureau N, Wilson D, Young J (2008) Magdalena Ridge Observatory Interferometer: progress toward first light. SPIE 7013:26. doi:10.1117/12.789859

    ADS  Google Scholar 

  • Crida A, Morbidelli A (2007) Cavity opening by a giant planet in a protoplanetary disc and effects on planetary migration. Mon Not R Astron Soc 377:1324–1336. doi:10.1111/j.1365-2966.2007.11704.x. arXiv:astro-ph/0703151

    ADS  Google Scholar 

  • D’Alessio P, Canto J, Calvet N, Lizano S (1998) Accretion disks around Young objects, I: the detailed vertical structure. Astrophys J 500:411

    ADS  Google Scholar 

  • Delplancke F (2008) The PRIMA facility phase-referenced imaging and micro-arcsecond astrometry. New Astron Rev 52:199–207. doi:10.1016/j.newar.2008.04.016

    ADS  Google Scholar 

  • Delplancke F, Derie F, Lév”que S, Ménardi S, Abuter R, Andolfato L, Ballester P, de Jong J, Di Lieto N, Duhoux P, Frahm R, Gitton P, Glindemann A, Palsa R, Puech F, Sahlmann J, Schuhler N, Duc TP, Valat B, Wallander A (2006) PRIMA for the VLTI: a status report. SPIE 6268:E27. doi:10.1117/12.660395

    ADS  Google Scholar 

  • Dravins D, Lindegren L, Nordlund A (1981) Solar granulation—influence of convection on spectral line asymmetries and wavelength shifts. Astron Astrophys 96:345–364

    ADS  Google Scholar 

  • Dutrey A, Guilloteau S, Duvert G, Prato L, Simon M, Schuster K, Ménard F (1996) Dust and gas distribution around T Tauri stars in Taurus-Auriga, I: interferometric 2.7 mm continuum and 13CO J=1−0 observations. Astron Astrophys 309:493–504

    ADS  Google Scholar 

  • Duvert G, Bério P, Malbet F (2002) ASPRO, a software to prepare observations with optical interferometers. SPIE 4844:295. doi:10.1117/12.460600

    ADS  Google Scholar 

  • Eisenhauer F, Perrin G, Brandner W, Straubmeier C, Richichi A, Gillessen S, Berger JP, Hippler S, Eckart A, Schöller M, Rabien S, Cassaing F, Lenzen R, Thiel M, Clénet Y, Ramos JR, Kellner S, Fédou P, Baumeister H, Hofmann R, Gendron E, Boehm A, Bartko H, Haubois X, Klein R, Dodds-Eden K, Houairi K, Hormuth F, Gräter A, Jocou L, Naranjo V, Genzel R, Kervella P, Henning T, Hamaus N, Lacour S, Neumann U, Haug M, Malbet F, Laun W, Kolmeder J, Paumard T, Rohloff R, Pfuhl O, Perraut K, Ziegleder J, Rouan D, Rousset G (2008) GRAVITY: getting to the event horizon of Sgr A*. SPIE 7013:E69. doi:10.1117/12.788407

    ADS  Google Scholar 

  • Eisner JA, Graham JR, Akeson RL, Ligon ER, Colavita MM, Basri G, Summers K, Ragland S, Booth A (2007) Stellar and molecular radii of a mira star: first observations with the Keck interferometer grism. Astrophys J Lett 654:L77–L80. doi:10.1086/510717. arXiv:astro-ph/0611312

    ADS  Google Scholar 

  • Elitzur M (2008) The toroidal obscuration of active galactic nuclei. New Astron Rev 52:274–288. doi:10.1016/j.newar.2008.06.010. arXiv:0805.3699

    ADS  Google Scholar 

  • Fedele D, Wittkowski M, Paresce F, Scholz M, Wood PR, Ciroi S (2005) The K-band intensity profile of R Leonis probed by VLTI/VINCI. Astron Astrophys 431:1019–1026. doi:10.1051/0004-6361:20042013. arXiv:astro-ph/0411133

    ADS  Google Scholar 

  • Freytag B, Höfner S (2008) Three-dimensional simulations of the atmosphere of an AGB star. Astron Astrophys 483:571–583. doi:10.1051/0004-6361:20078096

    ADS  Google Scholar 

  • Freytag B, Ludwig HG, Steffen M (1996) Hydrodynamical models of stellar convection. The role of overshoot in DA white dwarfs, A-type stars, and the Sun. Astron Astrophys 313:497–516

    ADS  Google Scholar 

  • Freytag B, Steffen M, Dorch B (2002) Spots on the surface of Betelgeuse—results from new 3D stellar convection models. Astron Nachr 323:213–219

    ADS  Google Scholar 

  • Freytag B, Allard F, Ludwig HG, Homeier D, Steffen M (2008) Models of surface convection and dust clouds in brown dwarfs. Phys Scr T 133(1):014,005. doi:10.1088/0031-8949/2008/T133/014005

    Google Scholar 

  • Glindemann A (2011) Principles of stellar interferometry

  • Goodman JW (1985) Statistical optics

  • Gray DF (2008) Mass motions in the photosphere of Betelgeuse. Astron J 135:1450–1458. doi:10.1088/0004-6256/135/4/1450

    ADS  Google Scholar 

  • Guilloteau S, Delannoy J, Downes D, Greve A, Guelin M, Lucas R, Morris D, Radford SJE, Wink J, Cernicharo J, Forveille T, Garcia-Burillo S, Neri R, Blondel J, Perrigourad A, Plathner D, Torres M (1992) The IRAM interferometer on Plateau de Bure. Astron Astrophys 262:624–633

    ADS  Google Scholar 

  • Gull SF, Skilling J (1984) The Maximum Entropy Method. In: Roberts JA (ed) Indirect imaging. Measurement and processing for indirect imaging, p 267

    Google Scholar 

  • Gustafsson B, Bell RA, Eriksson K, Nordlund A (1975) A grid of model atmospheres for metal-deficient giant stars, I. Astron Astrophys 42:407–432

    ADS  Google Scholar 

  • Haguenauer P, Abuter R, Alonso J, Argomedo J, Bauvir B, Blanchard G, Bonnet H, Brillant S, Cantzler M, Derie F, Delplancke F, Di Lieto N, Dupuy C, Durand Y, Gitton P, Gilli B, Glindemann A, Guniat S, Guisard S, Haddad N, Hudepohl G, Hummel C, Jesuran N, Kaufer A, Koehler B, Le Bouquin JB, Lév”que S, Lidman C, Mardones P, Ménardi S, Percheron I, Morel S, Petr-Gotzens M, Phan Duc T, Puech F, Ramirez A, Rantakyrö F, Richichi A, Rivinius T, Sahlmann J, Sandrock S, Schöller M, Schuhler N, Somboli F, Stefl S, Tapia M, Van Belle G, Wallander A, Wehner S, Wittkowski M (2008) The very large telescope interferometer: an update. SPIE 7013:E11. doi:10.1117/12.788209

    ADS  Google Scholar 

  • Haniff C (2007) Ground-based optical interferometry: a practical primer. New Astron Rev 51:583–596. doi:10.1016/j.newar.2007.06.004

    ADS  Google Scholar 

  • Haniff CA, Mackay CD, Titterington DJ, Sivia D, Baldwin JE (1987) The first images from optical aperture synthesis. Nature 328:694–696. doi:10.1038/328694a0

    ADS  Google Scholar 

  • Haubois X, Perrin G, Lacour S, Verhoelst T, Meimon S, Mugnier L, Thiébaut E, Berger JP, Ridgway ST, Monnier JD, Millan-Gabet R, Traub W (2009) Imaging the spotty surface of <ASTROBJ>Betelgeuse</ASTROBJ> in the H band. Astron Astrophys 508:923–932. doi:10.1051/0004-6361/200912927. arXiv:0910.4167

    ADS  Google Scholar 

  • Hofmann KH, Weigelt G (1993) Iterative image reconstruction from the bispectrum. Astron Astrophys 278:328–339

    ADS  Google Scholar 

  • Hofmann KH, Kraus S, Lopez B, Weigelt G, Wolf S (2006) Aperture synthesis image reconstruction study for the mid-infrared VLTI imager MATISSE. SPIE 6268:E112. doi:10.1117/12.671678

    ADS  Google Scholar 

  • Höfner S, Gautschy-Loidl R, Aringer B, Jørgensen UG (2003) Dynamic model atmospheres of AGB stars. III. Effects of frequency-dependent radiative transfer. Astron Astrophys 399:589–601. doi:10.1051/0004-6361:20021757

    ADS  Google Scholar 

  • Högbom JA (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl Ser 15:417

    ADS  Google Scholar 

  • Hönig SF, Kishimoto M (2010) The dusty heart of nearby active galaxies, II: from clumpy torus models to physical properties of dust around AGN. Astron Astrophys 523:A27. doi:10.1051/0004-6361/200912676. arXiv:0909.4539

    Google Scholar 

  • Hönig SF, Beckert T, Ohnaka K, Weigelt G (2006) Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068. Astron Astrophys 452:459–471. doi:10.1051/0004-6361:20054622. arXiv:astro-ph/0602494

    ADS  Google Scholar 

  • Hönig SF, Prieto MA, Beckert T (2008) High-spatial resolution SED of NGC 1068 from near-IR to radio. Disentangling the thermal and non-thermal contributions. Astron Astrophys 485:33–39. doi:10.1051/0004-6361:200809606. arXiv:0804.0236

    ADS  Google Scholar 

  • Hutter DJ, Benson JA, Buschmann T, DiVittorio M, Zavala RT, Johnston KJ, Armstrong JT, Hindsley RB, Schmitt HR, Clark JH III, Restaino SR, Tycner C, Jorgensen AM, Davis S (2008) NPOI: recent progress and future prospects. In: Society of photo-optical instrumentation engineers (SPIE), vol 7013. doi:10.1117/12.787486

    Google Scholar 

  • Ireland MJ, Scholz M, Wood PR (2004) On the observability of geometric pulsation of M-type Mira variables. Mon Not R Astron Soc 352:318–324. doi:10.1111/j.1365-2966.2004.07928.x

    ADS  Google Scholar 

  • Ireland MJ, Monnier JD, Thureau N (2006) Monte-Carlo imaging for optical interferometry. SPIE 6268:E58. doi:10.1117/12.670940

    ADS  Google Scholar 

  • Jaffe W, Meisenheimer K, Röttgering HJA, Leinert C, Richichi A, Chesneau O, Fraix-Burnet D, Glazenborg-Kluttig A, Granato GL, Graser U, Heijligers B, Köhler R, Malbet F, Miley GK, Paresce F, Pel JW, Perrin G, Przygodda F, Schoeller M, Sol H, Waters LBFM, Weigelt G, Woillez J, de Zeeuw PT (2004) The central dusty torus in the active nucleus of NGC 1068. Nature 429:47–49. doi:10.1038/nature02531

    ADS  Google Scholar 

  • Jang-Condell H (2008) Planet Shadows in Protoplanetary Disks. I. Temperature Perturbations. Astrophys J 679:797–812. doi:10.1086/533583. arXiv:0801.4561

    ADS  Google Scholar 

  • Jang-Condell H (2009) Planet Shadows in Protoplanetary Disks. II. Observable Signatures. Astrophys J 700:820–831. doi:10.1088/0004-637X/700/1/820. arXiv:0906.1375

    ADS  Google Scholar 

  • Jennison RC (1958) A phase sensitive interferometer technique for the measurement of the Fourier transforms of spatial brightness distributions of small angular extent. Mon Not R Astron Soc 118:276

    ADS  Google Scholar 

  • Josselin E, Plez B (2007) Atmospheric dynamics and the mass loss process in red supergiant stars. Astron Astrophys 469:671–680. doi:10.1051/0004-6361:20066353. arXiv:0705.0266

    ADS  Google Scholar 

  • Karastergiou A, Neri R, Gurwell MA (2006) Adapting and Expanding Interferometric Arrays. Astrophys J Suppl Ser 164:552–558. doi:10.1086/503630. arXiv:arXiv:astro-ph/0602578

    ADS  Google Scholar 

  • Keller SC, Wood PR (2006) Bump cepheids in the Magellanic Clouds: metallicities, the distances to the LMC and SMC, and the pulsation-evolution mass discrepancy. Astrophys J 642:834–841. doi:10.1086/501115. arXiv:arXiv:astro-ph/0601225

    ADS  Google Scholar 

  • Kervella P, Verhoelst T, Ridgway ST, Perrin G, Lacour S, Cami J, Haubois X (2009) The close circumstellar environment of Betelgeuse. Adaptive optics spectro-imaging in the near-IR with VLT/NACO. Astron Astrophys 504:115–125. doi:10.1051/0004-6361/200912521. arXiv:0907.1843

    ADS  Google Scholar 

  • Kishimoto M, Hönig SF, Antonucci R, Barvainis R, Kotani T, Tristram KRW, Weigelt G, Levin K (2011) The innermost dusty structure in active galactic nuclei as probed by the Keck interferometer. Astron Astrophys 527:A121. doi:10.1051/0004-6361/201016054. arXiv:1012.5359

    ADS  Google Scholar 

  • Kloppenborg B, Stencel R, Monnier JD, Schaefer G, Zhao M, Baron F, McAlister H, Ten Brummelaar T, Che X, Farrington C, Pedretti E, Sallave-Goldfinger PJ, Sturmann J, Sturmann L, Thureau N, Turner N, Carroll SM (2010) Infrared images of the transiting disk in the ϵ Aurigae system. Nature 464:870–872. doi:10.1038/nature08968. arXiv:1004.2464

    ADS  Google Scholar 

  • Kraus S, Weigelt G, Balega YY, Docobo JA, Hofmann KH, Preibisch T, Schertl D, Tamazian VS, Driebe T, Ohnaka K, Petrov R, Schöller M, Smith M (2009) Tracing the young massive high-eccentricity binary system \(\theta\hat{1}\) Orionis C through periastron passage. Astron Astrophys 497:195–207. doi:10.1051/0004-6361/200810368. arXiv:0902.0365

    ADS  Google Scholar 

  • Kraus S, Hofmann KH, Menten KM, Schertl D, Weigelt G, Wyrowski F, Meilland A, Perraut K, Petrov R, Robbe-Dubois S, Schilke P, Testi L (2010) A hot compact dust disk around a massive young stellar object. Nature 466:339–342. doi:10.1038/nature09174. arXiv:1007.5062

    ADS  Google Scholar 

  • Krolik JH, Begelman MC (1988) Molecular tori in Seyfert galaxies—feeding the monster and hiding it. Astrophys J 329:702–711. doi:10.1086/166414

    ADS  Google Scholar 

  • Labeyrie A, Koechlin L, Bonneau D, Blazit A, Foy R (1977) Strong TiO-related variations in the diameters of Mira and R Leonis. Astrophys J Lett 218:L75–L78. doi:10.1086/182579

    ADS  Google Scholar 

  • Lacour S, Meimon S, Thiébaut E, Perrin G, Verhoelst T, Pedretti E, Schuller PA, Mugnier L, Monnier J, Berger JP, Haubois X, Poncelet A, Le Besnerais G, Eriksson K, Millan-Gabet R, Ragland S, Lacasse M, Traub W (2008) The limb-darkened Arcturus: imaging with the IOTA/IONIC interferometer. Astron Astrophys 485:561–570. doi:10.1051/0004-6361:200809611. arXiv:0804.0192

    ADS  Google Scholar 

  • Lacour S, Thiébaut E, Perrin G, Meimon S, Haubois X, Pedretti E, Ridgway ST, Monnier JD, Berger JP, Schuller PA, Woodruff H, Poncelet A, Le Coroller H, Millan-Gabet R, Lacasse M, Traub W (2009) The pulsation of χ Cygni imaged by optical interferometry: a novel technique to derive distance and mass of mira stars. Astrophys J 707:632–643. doi:10.1088/0004-637X/707/1/632. arXiv:0910.3869

    ADS  Google Scholar 

  • Lawson PR (ed) (2000) Principles of long baseline stellar interferometry

  • Lawson PR, Cotton WD, Hummel CA, Monnier JD, Zhao M, Young JS, Thorsteinsson H, Meimon SC, Mugnier LM, Le Besnerais G, Thiebaut EM, Tuthill PG (2004) An interferometry imaging beauty contest. SPIE 5491:886

    ADS  Google Scholar 

  • Lawson PR, Cotton WD, Hummel CA, Baron F, Young JS, Kraus S, Hofmann K, Weigelt GP, Ireland M, Monnier JD, Thiébaut E, Rengaswamy S, Chesneau O (2006) 2006 interferometry imaging beauty contest. SPIE 6268:E59. doi:10.1117/12.670409

    ADS  Google Scholar 

  • Le Bouquin JB, Lacour S, Renard S, Thiébaut E, Merand A, Verhoelst T (2009) Pre-maximum spectro-imaging of the Mira star T Leporis with AMBER/VLTI. Astron Astrophys 496:L1–L4. doi:10.1051/0004-6361/200811579. arXiv:0902.3698

    ADS  Google Scholar 

  • Le Bouquin JB, Berger JP, Lazareff B, Zins G, Haguenauer P, Jocou L, Kern P, Millan-Gabet R, Traub W, Absil O, Augereau JC, Benisty M, Blind N, Bonfils X, Bourget P, Delboulbe A, Feautrier P, Germain M, Gitton P, Gillier D, Kiekebusch M, Kluska J, Knudstrup J, Labeye P, Lizon JL, Monin JL, Magnard Y, Malbet F, Maurel D, Ménard F, Micallef M, Michaud L, Montagnier G, Morel S, Moulin T, Perraut K, Popovic D, Rabou P, Rochat S, Rojas C, Roussel F, Roux A, Stadler E, Stefl S, Tatulli E, Ventura N (2011) PIONIER: a 4-telescope visitor instrument at VLTI. Astron Astrophys 535:A67. doi:10.1051/0004-6361/201117586. arXiv:1109.1918

    Google Scholar 

  • Leinert C, Graser U, Waters LBFM, Perrin GS, Jaffe W, Lopez B, Przygodda F, Chesneau O, Schuller PA, Glazenborg-Kluttig AW, Laun W, Ligori S, Meisner JA, Wagner K, Bakker EJ, Cotton B, de Jong J, Mathar R, Neumann U, Storz C (2003) Ten-micron instrument MIDI: getting ready for observations on the VLTI. SPIE 4838:893

    ADS  Google Scholar 

  • Levesque EM, Massey P, Olsen KAG, Plez B, Josselin E, Maeder A, Meynet G (2005) The effective temperature scale of galactic red supergiants: cool, but not as cool as we thought. Astrophys J 628:973–985. doi:10.1086/430901. arXiv:arXiv:astro-ph/0504337

    ADS  Google Scholar 

  • Lissauer JJ (1993) Planet formation. Annu Rev Astron Astrophys 31:129–174. doi:10.1146/annurev.aa.31.090193.001021

    ADS  Google Scholar 

  • Lopez B, Antonelli P, Wolf S, Lagarde S, Jaffe W, Navarro R, Graser U, Petrov R, Weigelt G, Bresson Y, Hofmann KH, Beckman U, Henning T, Laun W, Leinert C, Kraus S, Robbe-Dubois S, Vakili F, Richichi A, Abraham P, Augereau J, Behrend J, Berio P, Berruyer N, Chesneau O, Clausse JM, Connot C, Demyk K, Danchi WC, Dugué M, Finger G, Flament S, Glazenborg A, Hannenburg H, Heininger M, Hugues Y, Hron J, Jankov S, Kerschbaum F, Kroes G, Linz H, Lizon J, Mathias P, Mathar R, Matter A, Menut JL, Meisenheimer K, Millour F, Nardetto N, Neumann U, Nussbaum E, Niedzielski A, Mosoni L, Olofsson J, Rabbia Y, Ratzka T, Rigal F, Roussel A, Schertl D, Schmider F, Stecklum B, Thiebaut E, Vannier M, Valat B, Wagner K, Waters LBFM (2008) MATISSE: perspective of imaging in the mid-infrared at the VLTI. SPIE 7013:E70. doi:10.1117/12.789412

    ADS  Google Scholar 

  • Ludwig HG (2006) Hydrodynamical simulations of convection-related stellar micro-variability. I. Statistical relations for photometric and photocentric variability. Astron Astrophys 445:661–671. doi:10.1051/0004-6361:20042102. arXiv:arXiv:astro-ph/0509441

    ADS  MATH  Google Scholar 

  • Malbet F, Perrin G (2007) Observation and Data reduction with the VLT interferometer”. New Astron Rev 51:563–564. doi:10.1016/j.newar.2007.06.001

    ADS  Google Scholar 

  • Malbet F, Lachaume R, Berger J, Colavita MM, di Folco E, Eisner JA, Lane BF, Millan-Gabet R, Ségransan D, Traub WA (2005) New insights on the AU-scale circumstellar structure of FU Orionis. Astron Astrophys 437:627. doi:10.1051/0004-6361:20042556. arXiv:arXiv:astro-ph/0503619

    ADS  Google Scholar 

  • Malbet F, Buscher D, Weigelt G, Garcia P, Gai M, Lorenzetti D, Surdej J, Hron J, Neuhäuser R, Kern P, Jocou L, Berger J, Absil O, Beckmann U, Corcione L, Duvert G, Filho M, Labeye P, Le Coarer E, Li Causi G, Lima J, Perraut K, Tatulli E, Thiébaut E, Young J, Zins G, Amorim A, Aringer B, Beckert T, Benisty M, Cabral A, Bonfils X, Chelli A, Chesneau O, Chiavassa A, Corradi R, De Becker M, Delboulbé A, Duch”ne G, Forveille T, Haniff C, Herwats E, Hofmann K, Le Bouquin J, Ligori S, Loreggia D, Marconi A, Moitinho A, Nisini B, Petrucci P, Rebordao J, Speziali R, Testi L, Vitali F (2008) VSI: the VLTI spectro-imager. SPIE 7013:E68. doi:10.1117/12.789710

    ADS  Google Scholar 

  • Malbet F, Cotton W, Duvert G, Lawson P, Chiavassa A, Young J, Baron F, Buscher D, Rengaswamy S, Kloppenborg B, Vannier M, Mugnier L (2010) The 2010 interferometric imaging beauty contest. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 7734. doi:10.1117/12.857066. arXiv:1007.4473

    Google Scholar 

  • Masset FS, Papaloizou JCB (2003) Runaway migration and the formation of Hot Jupiters. Astrophys J 588:494–508. doi:10.1086/373892. arXiv:astro-ph/0301171

    ADS  Google Scholar 

  • McAlister HA, ten Brummelaar TA, Gies DR, Huang W, Bagnuolo WGJr, Shure MA, Sturmann J, Sturmann L, Turner NH, Taylor SF, Berger DH, Baines EK, Grundstrom E, Ogden C, Ridgway ST, van Belle G (2005) First results from the CHARA array, I: an interferometric and spectroscopic study of the fast rotator α Leonis (Regulus). Astrophys J 628:439–452. doi:10.1086/430730. arXiv:astro-ph/0501261

    ADS  Google Scholar 

  • McCaughrean MJ, O’Dell CR (1996) Direct imaging of circumstellar disks in the Orion Nebula. Astron J 111:1977. doi:10.1086/117934

    ADS  Google Scholar 

  • Meimon S, Mugnier LM, Le Besnerais G (2005) Convex approximation to the likelihood criterion for aperture synthesis imaging. J Opt Soc Am A 22:2348–2356. doi:10.1364/JOSAA.22.002348

    ADS  Google Scholar 

  • Meimon S, Mugnier LM, Le Besnerais G (2008) Self-calibration approach for optical long-baseline interferometry imaging. J Opt Soc Am A 26:108. doi:10.1364/JOSAA.26.000108. arXiv:0812.1178

    ADS  Google Scholar 

  • Meisenheimer K, Tristram KRW, Jaffe W, Israel F, Neumayer N, Raban D, Röttgering H, Cotton WD, Graser U, Henning T, Leinert C, Lopez B, Perrin G, Prieto A (2007) Resolving the innermost parsec of Centaurus A at mid-infrared wavelengths. Astron Astrophys 471:453–465. doi:10.1051/0004-6361:20066967. arXiv:arXiv:0707.0177

    ADS  Google Scholar 

  • Meisner JA, Jaffe WJ, Le Poole RS, Pereira SF, Quirrenbach A, Raban D, Vosteen A (2010) The polarization-based collimated beam combiner and the proposed NOVA fringe tracker (NFT) for the VLTI. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 7734. doi:10.1117/12.858271

    Google Scholar 

  • Mennesson B, Perrin G, Chagnon G, du Coudé Foresto V, Ridgway S, Merand A, Salome P, Borde P, Cotton W, Morel S, Kervella P, Traub W, Lacasse M (2002) Evidence for very extended gaseous layers around O-rich Mira variables and M giants. Astrophys J 579:446–454. doi:10.1086/342671

    ADS  Google Scholar 

  • Millan-Gabet R, Monnier JD, Berger J, Traub WA, Schloerb FP, Pedretti E, Benisty M, Carleton NP, Haguenauer P, Kern P, Labeye P, Lacasse MG, Malbet F, Perraut K, Pearlman M, Thureau N (2006) Bright localized near-infrared emission at 1-4 AU in the AB Aurigae disk revealed by IOTA closure phases. Astrophys J Lett 645:L77–L80. doi:10.1086/506153. arXiv:astro-ph/0606059

    ADS  Google Scholar 

  • Millan-Gabet R, Malbet F, Akeson R, Leinert C, Monnier J, Waters R (2007) The circumstellar environments of young stars at AU scales. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V, pp 539–554

    Google Scholar 

  • Millour F, Chesneau O, Borges Fernandes M, Meilland A, Mars G, Benoist C, Thiébaut E, Stee P, Hofmann K, Baron F, Young J, Bendjoya P, Carciofi A, Domiciano de Souza A, Driebe T, Jankov S, Kervella P, Petrov RG, Robbe-Dubois S, Vakili F, Waters LBFM, Weigelt G (2009) A binary engine fuelling HD 87643’s complex circumstellar environment. Determined using AMBER/VLTI imaging. Astron Astrophys 507:317–326. doi:10.1051/0004-6361/200811592. arXiv:0908.0227

    ADS  Google Scholar 

  • Millour F, Meilland A, Chesneau O, Stee P, Kanaan S, Petrov R, Mourard D, Kraus S (2011) Imaging the spinning gas and dust in the disc around the supergiant A[e] star HD 62623. Astron Astrophys 526:A107. doi:10.1051/0004-6361/201016193. arXiv:1012.2957

    ADS  Google Scholar 

  • Monnier JD (2003) Optical interferometry in astronomy. Rep Prog Phys 66:789–857. doi:10.1088/0034-4885/66/5/203. arXiv:astro-ph/0307036

    ADS  Google Scholar 

  • Monnier JD (2007) Phases in interferometry. New Astron Rev 51:604–616. doi:10.1016/j.newar.2007.06.006

    ADS  Google Scholar 

  • Monnier JD, Millan-Gabet R, Tuthill PG, Traub WA, Carleton NP, Coudé du Foresto V, Danchi WC, Lacasse MG, Morel S, Perrin G, Porro IL, Schloerb FP, Townes CH (2004) High-resolution imaging of dust shells by using keck aperture masking and the IOTA interferometer. Astrophys J 605:436–461. doi:10.1086/382218. arXiv:astro-ph/0401363

    ADS  Google Scholar 

  • Monnier JD, Pedretti E, Thureau N, Berger JP, Millan-Gabet R, ten Brummelaar T, McAlister H, Sturmann J, Sturmann L, Muirhead P, Tannirkulam A, Webster S, Zhao M (2006) Michigan Infrared Combiner (MIRC): commissioning results at the CHARA array. SPIE 6268:E55. doi:10.1117/12.671982

    ADS  Google Scholar 

  • Monnier JD, Zhao M, Pedretti E, Thureau N, Ireland M, Muirhead P, Berger JP, Millan-Gabet R, Van Belle G, ten Brummelaar T, McAlister H, Ridgway S, Turner N, Sturmann L, Sturmann J, Berger D (2007) Imaging the surface of Altair. Science 317:342. doi:10.1126/science.1143205. arXiv:0706.0867

    ADS  Google Scholar 

  • Mourard D, Clausse JM, Marcotto A, Perraut K, Tallon-Bosc I, Bério P, Blazit A, Bonneau D, Bosio S, Bresson Y, Chesneau O, Delaa O, Hénault F, Hughes Y, Lagarde S, Merlin G, Roussel A, Spang A, Stee P, Tallon M, Antonelli P, Foy R, Kervella P, Petrov R, Thiebaut E, Vakili F, McAlister H, ten Brummelaar T, Sturmann J, Sturmann L, Turner N, Farrington C, Goldfinger PJ (2009) VEGA: visible spectrograph and polarimeter for the CHARA array: principle and performance. Astron Astrophys 508:1073–1083. doi:10.1051/0004-6361/200913016

    ADS  Google Scholar 

  • Narayan R, Nityananda R (1986) Maximum entropy image restoration in astronomy. Annu Rev Astron Astrophys 24:127–170. doi:10.1146/annurev.aa.24.090186.001015

    ADS  Google Scholar 

  • Nenkova M, Ivezić Ž, Elitzur M (2002) Dust emission from active galactic nuclei. Astrophys J Lett 570:L9–L12. doi:10.1086/340857. arXiv:astro-ph/0202405

    ADS  Google Scholar 

  • Nenkova M, Sirocky MM, Ivezić Ž, Elitzur M (2008a) AGN dusty tori, I: handling of clumpy media. Astrophys J 685:147–159. doi:10.1086/590482. arXiv:0806.0511

    ADS  Google Scholar 

  • Nenkova M, Sirocky MM, Nikutta R, Ivezić Ž, Elitzur M (2008b) AGN Dusty Tori. II: observational implications of clumpiness. Astrophys J 685:160–180. doi:10.1086/590483. arXiv:0806.0512

    ADS  Google Scholar 

  • Nordlund Å. (1982) Numerical simulations of the solar granulation, I: basic equations and methods. Astron Astrophys 107:1–10

    ADS  MATH  Google Scholar 

  • Ohnaka K (2004) Warm water vapor envelope in the supergiants α Ori and α Her and its effects on the apparent size from the near-infrared to the mid-infrared. Astron Astrophys 421:1149–1158. doi:10.1051/0004-6361:20035668. arXiv:arXiv:astro-ph/0406053

    ADS  Google Scholar 

  • Ohnaka K, Bergeat J, Driebe T, Graser U, Hofmann KH, Köhler R, Leinert C, Lopez B, Malbet F, Morel S, Paresce F, Perrin G, Preibisch T, Richichi A, Schertl D, Schöller M, Sol H, Weigelt G, Wittkowski M (2005) Mid-infrared interferometry of the Mira variable RR Sco with the VLTI MIDI instrument. Astron Astrophys 429:1057–1067. doi:10.1051/0004-6361:20041052

    ADS  Google Scholar 

  • Ohnaka K, Driebe T, Hofmann KH, Weigelt G, Wittkowski M (2008) Spatially resolved dusty torus toward the red supergiant WOH G64 in the Large Magellanic Cloud. Astron Astrophys 484:371–379. doi:10.1051/0004-6361:200809469. arXiv:0803.3823

    ADS  Google Scholar 

  • Ohnaka K, Hofmann K, Benisty M, Chelli A, Driebe T, Millour F, Petrov R, Schertl D, Stee P, Vakili F, Weigelt G (2009) Spatially resolving the inhomogeneous structure of the dynamical atmosphere of Betelgeuse with VLTI/AMBER. Astron Astrophys 503:183–195. doi:10.1051/0004-6361/200912247. arXiv:0906.4792

    ADS  Google Scholar 

  • Olofsson J, Benisty M, Augereau JC, Pinte C, Ménard F, Tatulli E, Berger JP, Malbet F, Merín B, van Dishoeck EF, Lacour S, Pontoppidan KM, Monin JL, Brown JM, Blake GA (2011) Warm dust resolved in the cold disk around T Chamaeleontis with VLTI/AMBER. Astron Astrophys 528:L6. doi:10.1051/0004-6361/201016074. arXiv:1102.4976

    ADS  Google Scholar 

  • Paladini C, Aringer B, Hron J, Nowotny W, Sacuto S, Höfner S (2009) Interferometric properties of pulsating C-rich AGB stars. Intensity profiles and uniform disc diameters of dynamic model atmospheres. Astron Astrophys 501:1073–1085. doi:10.1051/0004-6361/200911938. arXiv:0904.2166

    ADS  Google Scholar 

  • Pauls TA, Young JS, Cotton WD, Monnier JD (2005) A data exchange standard for optical (Visible/IR) interferometry. Publ Astron Soc Pac 117:1255–1262. doi:10.1086/444523. arXiv:astro-ph/0508185

    ADS  Google Scholar 

  • Perrin G, Coudé du Foresto V, Ridgway ST, Mennesson B, Ruilier C, Mariotti JM, Traub WA, Lacasse MG (1999) Interferometric observations of R Leonis in the K band. First direct detection of the photospheric pulsation and study of the atmospheric intensity distribution. Astron Astrophys 345:221–232

    ADS  Google Scholar 

  • Perrin G, Ridgway ST, Coudé du Foresto V, Mennesson B, Traub WA, Lacasse MG (2004a) Interferometric observations of the supergiant stars α Orionis and α Herculis with FLUOR at IOTA. Astron Astrophys 418:675–685. doi:10.1051/0004-6361:20040052. arXiv:astro-ph/0402099

    ADS  Google Scholar 

  • Perrin G, Ridgway ST, Mennesson B, Cotton WD, Woillez J, Verhoelst T, Schuller P, Coudé du Foresto V, Traub WA, Millan-Gabet R, Lacasse MG (2004b) Unveiling Mira stars behind the molecules. Confirmation of the molecular layer model with narrow band near-infrared interferometry. Astron Astrophys 426:279–296. doi:10.1051/0004-6361:20041098

    ADS  Google Scholar 

  • Perrin G, Verhoelst T, Ridgway ST, Cami J, Nguyen QN, Chesneau O, Lopez B, Leinert C, Richichi A (2007) The molecular and dusty composition of Betelgeuse’s inner circumstellar environment. Astron Astrophys 474:599–608. doi:10.1051/0004-6361:20077863. arXiv:0709.0356

    ADS  Google Scholar 

  • Petrov RG, Malbet F, Weigelt G, Antonelli P, Beckmann U, Bresson Y, Chelli A, Dugué M, Duvert G, Gennari S, Glück L, Kern P, Lagarde S, Le Coarer E, Lisi F, Millour F, Perraut K, Puget P, Rantakyrö F, Robbe-Dubois S, Roussel A, Salinari P, Tatulli E, Zins G, Accardo M, Acke B, Agabi K, Altariba E, Arezki B, Aristidi E, Baffa C, Behrend J, Blöcker T, Bonhomme S, Busoni S, Cassaing F, Clausse JM, Colin J, Connot C, Delboulbé A, Domiciano de Souza A, Driebe T, Feautrier P, Ferruzzi D, Forveille T, Fossat E, Foy R, Fraix-Burnet D, Gallardo A, Giani E, Gil C, Glentzlin A, Heiden M, Heininger M, Hernandez Utrera O, Hofmann KH, Kamm D, Kiekebusch M, Kraus S, Le Contel D, Le Contel JM, Lesourd T, Lopez B, Lopez M, Magnard Y, Marconi A, Mars G, Martinot-Lagarde G, Mathias P, Mège P, Monin JL, Mouillet D, Mourard D, Nussbaum E, Ohnaka K, Pacheco J, Perrier C, Rabbia Y, Rebattu S, Reynaud F, Richichi A, Robini A, Sacchettini M, Schertl D, Schöller M, Solscheid W, Spang A, Stee P, Stefanini P, Tallon M, Tallon-Bosc I, Tasso D, Testi L, Vakili F, von der Lühe O, Valtier JC, Vannier M, Ventura N (2007) AMBER, the near-infrared spectro-interferometric three-telescope VLTI instrument. Astron Astrophys 464:1–12. doi:10.1051/0004-6361:20066496

    ADS  Google Scholar 

  • Quirrenbach A (2000) Phase Referencing. In: Lawson PR (ed) Principles of long baseline stellar interferometry, p 143

    Google Scholar 

  • Quirrenbach A, Buscher DF, Mozurkewich D, Hummel CA, Armstrong JT (1994) Maximum-entropy maps of the Be shell star zeta Tauri from optical long-baseline interferometry. Astron Astrophys 283:L13–L16

    ADS  Google Scholar 

  • Raban D, Jaffe W, Röttgering H, Meisenheimer K, Tristram KRW (2009) Resolving the obscuring torus in NGC 1068 with the power of infrared interferometry: revealing the inner funnel of dust. Mon Not R Astron Soc 394:1325–1337. doi:10.1111/j.1365-2966.2009.14439.x. arXiv:0901.1306

    ADS  Google Scholar 

  • Readhead ACS, Nakajima TS, Pearson TJ, Neugebauer G, Oke JB, Sargent WLW (1988) Diffraction-limited imaging with ground-based optical telescopes. Astron J 95:1278–1296. doi:10.1086/114724

    ADS  Google Scholar 

  • Renard S, Thiébaut E, Malbet F (2011) Image reconstruction in optical interferometry: benchmarking the regularization. Astron Astrophys. arXiv:1106.4508

  • Robinson FJ, Demarque P, Li LH, Sofia S, Kim YC, Chan KL, Guenther DB (2004) Three-dimensional simulations of the upper radiation-convection transition layer in subgiant stars. Mon Not R Astron Soc 347:1208–1216

    ADS  Google Scholar 

  • Roddier F (1986) Triple correlation as a phase closure technique. Opt Commun 60:145–148. doi:10.1016/0030-4018(86)90168-9

    ADS  Google Scholar 

  • Ryde N, Lambert DL, Richter MJ, Lacy JH (2002) Detection of water vapor in the photosphere of Arcturus. Astrophys J 580:447–458. doi:10.1086/343040 arXiv:astro-ph/0207368

    ADS  Google Scholar 

  • Ryde N, Harper GM, Richter MJ, Greathouse TK, Lacy JH (2006) Water vapor on betelgeuse as revealed by TEXES high-resolution 12 μm spectra. Astrophys J 637:1040–1055. doi:10.1086/498420. arXiv:astro-ph/0510177

    ADS  Google Scholar 

  • Sacuto S, Aringer B, Hron J, Nowotny W, Paladini C, Verhoelst T, Höfner S (2011) Observing and modeling the dynamic atmosphere of the low mass-loss C-star R Sculptoris at high angular resolution. Astron Astrophys 525:A42. doi:10.1051/0004-6361/200913786. arXiv:1010.1350

    ADS  Google Scholar 

  • Schmitt HR, Pauls TA, Tycner C, Armstrong JT, Zavala RT, Benson JA, Gilbreath GC, Hindsley RB, Hutter DJ, Johnston KJ, Jorgensen AM, Mozurkewich D (2009) Navy prototype optical interferometer imaging of line emission regions of β Lyrae using differential phase referencing. Astrophys J 691:984–996. doi:10.1088/0004-637X/691/2/984. arXiv:0801.4772

    ADS  Google Scholar 

  • Scholz M, Takeda Y (1987) Model study of wavelength-dependent limb-darkening and radii of M-type giants and supergiants. Astron Astrophys 186:200–212

    ADS  Google Scholar 

  • Schwarzschild M (1975) On the scale of photospheric convection in red giants and supergiants. Astrophys J 195:137–144

    ADS  Google Scholar 

  • Sedlmayr E (1994) From molecules to grains. In: Jorgensen UG (ed) IAU Colloq. 146: molecules in the stellar environment. Lecture notes in physics, vol 428. Springer, Berlin, p 163. doi:10.1007/3-540-57747-5-42

    Google Scholar 

  • Ségransan D (2007) Observability and UV coverage. New Astron Rev 51:597–603. doi:10.1016/j.newar.2007.06.005

    ADS  Google Scholar 

  • Siess L, Dufour E, Forestini M (2000) An internet server for pre-main sequence tracks of low- and intermediate-mass stars. Astron Astrophys 358:593–599. arXiv:astro-ph/0003477

    ADS  Google Scholar 

  • Skilling J, Bryan RK (1984) Maximum entropy image reconstruction—general algorithm. Mon Not R Astron Soc 211:111

    ADS  MATH  Google Scholar 

  • Stothers R, Leung KC (1971) Luminosities, masses and periodicities of massive red supergiants. Astron Astrophys 10:290–300

    ADS  Google Scholar 

  • ten Brummelaar TA, McAlister HA, Ridgway ST, Bagnuolo WG Jr, Turner NH, Sturmann L, Sturmann J, Berger DH, Ogden CE, Cadman R, Hartkopf WI, Hopper CH, Shure MA (2005) First results from the CHARA Array. II. A Description of the Instrument. Astrophys J 628:453–465. doi:10.1086/430729. arXiv:astro-ph/0504082

    ADS  Google Scholar 

  • Thiébaut E (2008) MIRA: an effective imaging algorithm for optical interferometry. SPIE 7013:E43. doi:10.1117/12.788822

    Google Scholar 

  • Thiebaut E, Giovannelli JF (2010) Image reconstruction in optical interferometry. IEEE Signal Process Mag 27:97–109. doi:10.1109/MSP.2009.934870. arXiv:0909.2228

    ADS  Google Scholar 

  • Thompson AR, Moran JM, Swenson GW Jr (2001) Interferometry and synthesis in radio astronomy, 2nd edn

  • Townes CH, Wishnow EH (2008) Interferometry at mid-infrared wavelengths: the ISI system. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 7013. doi:10.1117/12.791197

    Google Scholar 

  • Tristram KRW, Meisenheimer K, Jaffe W, Schartmann M, Rix HW, Leinert C, Morel S, Wittkowski M, Röttgering H, Perrin G, Lopez B, Raban D, Cotton WD, Graser U, Paresce F, Henning T (2007) Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy. Astron Astrophys 474:837–850. doi:10.1051/0004-6361:20078369. arXiv:0709.0209

    ADS  Google Scholar 

  • Tsuji T (2000) Water in emission in the infrared space observatory spectrum of the early M supergiant Star μ Cephei. Astrophys J Lett 540:L99–L102. doi:10.1086/312879. arXiv:arXiv:astro-ph/0008058

    ADS  Google Scholar 

  • Tuthill PG, Monnier JD, Danchi WC (1999) A dusty pinwheel nebula around the massive star WR104. Nature 398:487–489. doi:10.1038/19033. arXiv:astro-ph/9904092

    ADS  Google Scholar 

  • Tuthill PG, Monnier JD, Danchi WC, Hale DDS, Townes CH (2002) Imaging the disk around the luminous young star LkHα 101 with infrared interferometry. Astrophys J 577:826–838. doi:10.1086/342235. arXiv:astro-ph/0206105

    ADS  Google Scholar 

  • Urry CM, Padovani P (1995) Unified schemes for radio-loud active galactic nuclei. Publ Astron Soc Pac 107:803. doi:10.1086/133630 arXiv:astro-ph/9506063

    ADS  Google Scholar 

  • Vakili F, Mourard D, Bonneau D, Morand F, Stee P (1997) Subtle structures in the wind of P Cygni. Astron Astrophys 323:183–188

    ADS  Google Scholar 

  • Varnière P, Quillen AC, Frank A (2004) The evolution of protoplanetary disk edges. Astrophys J 612:1152–1162. doi:10.1086/422542. arXiv:astro-ph/0306422

    ADS  Google Scholar 

  • Verhoelst T, Decin L, van Malderen R, Hony S, Cami J, Eriksson K, Perrin G, Deroo P, Vandenbussche B, Waters LBFM (2006) Amorphous alumina in the extended atmosphere of α Orionis. Astron Astrophys 447:311–324. doi:10.1051/0004-6361:20053359. arXiv:astro-ph/0510486

    ADS  Google Scholar 

  • Wedemeyer-Böhm S, Kamp I, Bruls J, Freytag B (2005) Carbon monoxide in the solar atmosphere, I: numerical method and two-dimensional models. Astron Astrophys 438:1043–1057. doi:10.1051/0004-6361:20042550

    ADS  Google Scholar 

  • Weigelt G (1991) Triple-correlation imaging in optical astronomy. Prog Opt 29:293–319. doi:10.1016/0030-4018(86)90168-9

    Google Scholar 

  • Weigelt G, Wittkowski M, Balega YY, Beckert T, Duschl WJ, Hofmann KH, Men’shchikov AB, Schertl D (2004) Diffraction-limited bispectrum speckle interferometry of the nuclear region of the Seyfert galaxy <ASTROBJ>NGC 1068</ASTROBJ> in the H and K’ bands. Astron Astrophys 425:77–87. doi:10.1051/0004-6361:20040362

    ADS  Google Scholar 

  • Weiner J (2004) Mira’s apparent size variations due to a surrounding semiopaque H2O layer. Astrophys J Lett 611:L37–L40. doi:10.1086/423672

    ADS  Google Scholar 

  • Wittkowski M, Kervella P, Arsenault R, Paresce F, Beckert T, Weigelt G (2004) VLTI/VINCI observations of the nucleus of NGC 1068 using the adaptive optics system MACAO. Astron Astrophys 418:L39–L42. doi:10.1051/0004-6361:20040118. arXiv:astro-ph/0403497

    ADS  Google Scholar 

  • Wittkowski M, Boboltz DA, Ohnaka K, Driebe T, Scholz M (2007) The Mira variable S Orionis: relationships between the photosphere, molecular layer, dust shell, and SiO maser shell at 4 epochs. Astron Astrophys 470:191–210. doi:10.1051/0004-6361:20077168. arXiv:0705.4614

    ADS  Google Scholar 

  • Wittkowski M, Boboltz DA, Driebe T, Le Bouquin JB, Millour F, Ohnaka K, Scholz M (2008) J, H, K spectro-interferometry of the Mira variable S Orionis. Astron Astrophys 479:L21–L24. doi:10.1051/0004-6361:20079237. arXiv:0801.0594

    ADS  Google Scholar 

  • Woitke P, Helling C, Winters JM, Jeong KS (1999) On the formation of it warm molecular layers. Astron Astrophys 348:L17–L20

    ADS  Google Scholar 

  • Wolf S (2008) Signatures of planets in young and evolved circumstellar disks. Phys Scr T 130(1):014.025. doi:10.1088/0031-8949/2008/T130/014025

    Google Scholar 

  • Wolf S, D’Angelo G (2005) On the observability of giant protoplanets in circumstellar disks. Astrophys J 619:1114–1122. doi:10.1086/426662. arXiv:astro-ph/0410064

    ADS  Google Scholar 

  • Wolf S, Klahr H (2002) Large-scale vortices in protoplanetary disks: on the observability of possible early stages of planet formation. Astrophys J Lett 578:L79–L82. doi:10.1086/344501. arXiv:astro-ph/0209002

    ADS  Google Scholar 

  • Wolf S, Gueth F, Henning T, Kley W (2002) Detecting planets in protoplanetary disks: a prospective study. Astrophys J Lett 566:L97–L99. doi:10.1086/339544. arXiv:astro-ph/0201197

    ADS  Google Scholar 

  • Wolf S, Moro-Martín A, D’Angelo G (2007) Signatures of planets in protoplanetary and debris disks. Planet Space Sci 55:569–581. doi:10.1016/j.pss.2006.04.035

    ADS  Google Scholar 

  • Wolf S, Malbet F, Alexander R, Berger JP, Creech-Eakman M, Duchene G, Dutrey A, Mordasini C, Pantin E, Pont F, Pott JU, Tatulli E, Testi L (2012) Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers. Astron Astrophys Rev. arXiv:1203.6271

  • Woodruff HC, Eberhardt M, Driebe T, Hofmann KH, Ohnaka K, Richichi A, Schertl D, Schöller M, Scholz M, Weigelt G, Wittkowski M, Wood PR (2004) Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared. Astron Astrophys 421:703–714. doi:10.1051/0004-6361:20035826. arXiv:astro-ph/0404248

    ADS  Google Scholar 

  • Woodruff HC, Ireland MJ, Tuthill PG, Monnier JD, Bedding TR, Danchi WC, Scholz M, Townes CH, Wood PR (2009) The keck aperture masking experiment: spectro-interferometry of three mira variables from 1.1 to 3.8 μm. Astrophys J 691:1328–1336. doi:10.1088/0004-637X/691/2/1328. arXiv:0811.1642

    ADS  Google Scholar 

  • Young JS, Baldwin JE, Boysen RC, Haniff CA, Lawson PR, Mackay CD, Pearson D, Rogers J, St-Jacques D, Warner PJ, Wilson DMA, Wilson RW (2000) New views of Betelgeuse: multi-wavelength surface imaging and implications for models of hotspot generation. Mon Not R Astron Soc 315:635–645

    ADS  Google Scholar 

  • Young JS, Badsen AG, Bharmal NA, Boysen RC, O’Donova B, Seneta EB, Thorsteinsson H, Thureau ND, Pedretti E, Monnier JD (2004) Unveling Alpha Orionis. In: UK national astronomy meeting

    Google Scholar 

  • Zavala RT, Hummel CA, Boboltz DA, Ojha R, Shaffer DB, Tycner C, Richards MT, Hutter DJ (2010) The Algol triple system spatially resolved at optical wavelengths. Astrophys J Lett 715:L44–L48. doi:10.1088/2041-8205/715/1/L44. arXiv:1005.0626

    ADS  Google Scholar 

  • Zhao M, Gies D, Monnier JD, Thureau N, Pedretti E, Baron F, Merand A, ten Brummelaar T, McAlister H, Ridgway ST, Turner N, Sturmann J, Sturmann L, Farrington C, Goldfinger PJ (2008) First resolved images of the eclipsing and interacting binary β lyrae. Astrophys J Lett 684:L95–L98. doi:10.1086/592146. arXiv:0808.0932

    ADS  Google Scholar 

  • Zhao M, Monnier JD, Pedretti E, Thureau N, Mérand A, ten Brummelaar T, McAlister H, Ridgway ST, Turner N, Sturmann J, Sturmann L, Goldfinger PJ, Farrington C (2009) Imaging and modeling rapidly rotating stars: α Cephei and α Ophiuchi. Astrophys J 701:209–224. 10.1007/s00159-012-0053-0. arXiv:0906.2241

    ADS  Google Scholar 

Download references

Acknowledgements

We are very grateful to A. Quirrenbach, the referee, for his in-depth reading and his many suggestions that helped improve the article. This work is the result of a workshop on Interferometry Imaging held in Château de Goutelas from 26 May to 29 May 2009 and organized by F. Malbet and J.-P. Berger following an idea of J.-L. Monin. We would like to thanks the members of the Science Organizing Committee O. Chesneau, T. Driebe, A. Marconi, J. Monnier, B. Plez, L. Testi, S. Wolf and J. Young, as well as the Local Organizing Committee. This workshop has been possible thanks to the financial participation of the Laboratoire d’Astrophysique de Grenoble (LAOG), of the Programme National of Physique Stellaire (PNPS) from CNRS, the Jean-Marie Mariotti Center (JMMC) and the Université Joseph Fourier. The web page for the workshop is at http://wii09.obs.ujf-grenoble.fr. M. Elitzur acknowledges the support of NSF (AST-0807417) and NASA (SSC-40095). S. Hönig acknowledges support by DFG. T.V. acknowledges support from the Fund for Scientific Research, Flanders as Postdoctoral Fellow. B.F. acknowledges financial support from ANR and the PNPS of CNRS/INSU, France. This research has made use of the Jean-Marie Mariotti Center SearchCal service.Footnote 11 We have made use of the SAO/NASA Astrophysics Data System. Figures were generated using the free Yorick software, under BSD license.Footnote 12

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Berger.

Appendices

Appendix A: Noise model for ASPRO simulations

This appendix is aimed at describing the noise model used in ASPRO for creating the simulations used in this paper (see Sect. 5.2).

The noise model is based on a general scheme valid for spatially filtered recombiners where the detection of fringes is made on a detector with “pixels”. This scheme is valid for image-plane recombination, with fringes covering a surface of a pixel camera, and for pupil recombination where fringes are obtained on a few pixels detector by scanning in optical path difference.

The flux \(\overline{N_{\mathrm{tot}}}\) from the object of magnitude m b in a given bandwidth Δλ of a photometric band b is collected by N tel telescopes of diameter D, transmitted with some instrumental transmission T inst, and injected with some Strehl factor s due to incomplete correction of wavefront aberrations due to seeing into a spatial filter like an optical single mode fiber for example, during a time t int. Thus:

$$ \overline{N_\mathrm{tot}} = \eta \, F_0 \, 10^{-0.4 m_b} \, T_\mathrm{inst} \, N_\mathrm{tel} \, s \, \frac{\pi D^2}{4} \, \Delta\lambda, $$
(5)

where F 0 is the zero-magnitude flux in band b, expressed in ph s−1 m−2 μm−1 transmitted through the atmosphere with an absorption η.

This flux is divided between the photometric flux and interferometric flux with a branching value b i , where b i equals 1 for recombiners which do not have simultaneous flux monitoring.

The N tel photometric fluxes \(\overline{N_{p}}=(1-b_{i}) \, \overline{N_{\mathrm{tot}}}/N_{\mathrm{tel}}\) are distributed on N pix pixels. The interferometric flux \(\overline{N_{i}}=b_{i} \, \overline{N_{\mathrm{tot}}}/N_{\mathrm{tel}}\) consists of N f =N tel (N tel−1)/2 fringes that cover \(N^{i}_{\mathrm{pix}}\) pixels. There are thus \(N_{\mathrm{ppf}}=N^{i}_{\mathrm{pix}}/N_{f}\) pixels per fringe.

These fringes code the intrinsic visibility V(u,v,λ) degraded by the interferometer instrumental contrast and the atmosphere (through the jitter associated with the temporal coherence of the seeing). V(u,v,λ) and the derived interferometric observables are thus affected by the sum of the variance of the flux used to code the corresponding fringe in the interferometric flux and of the associated two photometric fluxes. For example, since the squared visibility estimator of a correlated flux \(F_{c}^{ij}\) measured alongside with photometries F i and F j is \(V^{2}=\frac{1}{4}\langle |F_{c}^{ij}|^{2}\rangle/\langle F_{i}F_{j}\rangle\), the associated variance is

$$ \sigma^2\bigl(V^2\bigr) = \overline{N_i} V(u,v,\lambda) + N_\mathrm{ppf} \sigma^2_\mathrm{det} + 2 \bigl( \overline{N_p}+N^p_\mathrm{pix} \sigma_\mathrm{det}^2 \bigr), $$
(6)

where σ det is the readout noise of the detector.

The noise model used in ASPRO takes also into account the possibility of increasing the integration time to keep observations in a photon-dominated regime, when a fringe tracker is present.

Finally, no detailed calibration error was computed. We took instead an additional visibility and closure-phase threshold error set to 0.002 in visibility. and 0.1 degree in closure phase.

Appendix B: Computing fidelities

Testing image-reconstruction software is out of scope of this paper. In this appendix, we follow the approach described in ALMA Memo 398 (F. Gueth, private communication) to evaluate the quality of the reconstructed images presented in this paper. One of the possible methods to compare original (convolved to the interferometer resolution) and reconstructed image is to compute the fidelity of the image. This can be done either in the direct image plane or in the spatial frequency (u,v) plane. Such a pixel to pixel comparison requires subpixel alignment to limit the effect of sharp transitions.

In the image plane this fidelity can be expressed as

$$ \mathcal{F}(x,y)= \frac{\mathrm{abs}(\mathit{Model} (x, y))}{\max(\mathit{Diff}(x, y), \mathit{Threshold})}, $$
(7)

where Model(x,y) describes the object “true” brightness distribution and

$$ \mathit{Diff}(x,y)=\mathit{Model}(x,y)- \mathit{Reconstructed}(x-\Delta x,y-\Delta y) $$
(8)

describes the difference between the model and the reconstructed image shifted by the offset (Δxy) to have the images centered. For a proper comparison images are normalized to the total intensity contain in the image. Threshold is defined here as 0.7 rms[Diff(x,y)] which provides an estimation of the threshold noise of this difference. For example a pixel fidelity of 100 corresponds to a difference of 1 % between the model and reconstructed image. We have computed such a fidelity for three of our objects: the supergiant, the evolved star and the active galactic nuclei. Figures 10 and 11 offer different ways to visualize fidelity. The first row shows the cumulated average fidelity over the image for the three different objects. The second row displays the original model image filtered by fidelity level, i.e. only the pixels with fidelity above a certain level are displayed. Finally Table 6 shows the average fidelity of the pixels whose intensity is above a certain fraction of the total image intensity.

Fig. 10
figure 10

Top row: cumulated average fidelity for the supergiant and evolved star cases. Blue dashed, green dashed-dotted, red dotted vertical lines: number of pixels with intensity greater than a given fraction of the total image intensity, respectively: 4×10−4, 1×10−4, 4×10−5 for the supergiant (left), 5×10−3, 1×10−3, 5×10−4 for the evolved star (right). Horizontal lines share the same color code: median fidelity for pixels having intensity greater than a given fraction of image total intensity. Central row: original model image filtered with a fidelity threshold (supergiant: 10, evolved star: 10). Bottom row: fidelity profile along the solid cut line in central row. Orange solid line: fidelity; green dashed-dotted line: model image; dashed blue: reconstructed image. Units are given in fidelity, image profiles have been scaled to fit the figure

Fig. 11
figure 11

Top: cumulated average fidelity for the AGN case. Blue dashed, green dashed-dotted, red dotted vertical lines: number of pixels with intensity greater than a given fraction of the total image intensity i.e. 1×10−3, 5×10−4, 1×10−4. Horizontal lines share the same color code: median fidelity for pixels having intensity greater than a given fraction of image total intensity. Central: original model image filtered with a fidelity threshold (AGN: 3). Bottom: fidelity profile along the solid cut line in central row. Orange solid line: fidelity; green dashed-dotted line: model image; dashed blue: reconstructed image. Units are given in fidelity, image profiles have been scaled to fit the figure

Table 6 For a given fraction of the brightest pixels (col 1) the corresponding number of pixels, median and average fidelity is given for each object

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, JP., Malbet, F., Baron, F. et al. Imaging the heart of astrophysical objects with optical long-baseline interferometry. Astron Astrophys Rev 20, 53 (2012). https://doi.org/10.1007/s00159-012-0053-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-012-0053-0

Keywords

Navigation