Skip to main content
Log in

A non-probabilistic reliability-based topology optimization (NRBTO) method of continuum structures with convex uncertainties

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper develops a non-probabilistic reliability-based topology optimization (NRBTO) framework for continuum structures under multi-dimensional convex uncertainties. Combined with the solid isotropic material with penalization (SIMP) model and the set-theoretical convex method, the uncertainty quantification (UQ) analysis is firstly conducted to obtain mathematical approximations and boundary laws of considered displacement responses. By normalization treatment of the limit-state function, a new quantified measure of the non-probabilistic reliability is then defined and further deduced by the principle of the hyper-volume ratio. For circumventing optimization difficulties arising from large-scale design variables, the adjoint vector scheme for sensitivity analysis of the reliability index with respect to design variables are discussed as well. Numerical applications eventually illustrate the applicability and the validity of the present problem statement as well as the proposed numerical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Akguacute MA, Haftka RT, Wu KC, Walsh JL, Garcelon JH (2015) Efficient structural optimization for multiple load cases using adjoint sensitivities. AIAA J 39(3):511–516

    Article  Google Scholar 

  • Au FTK, Cheng YS, Tham LG, Zeng GW (2003) Robust design of structures using convex models. Comput Struct 81(28–29):2611–2619

    Article  Google Scholar 

  • Bai YC, Han X, Jiang C, Bi RG (2014) A response-surface-based structural reliability analysis method by using non-probability convex model. Appl Math Model 38(15–16):3834–3847

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology Optimization: Theory, Methods and Applications, Berlin. Springer Science and Business Media

  • Ben-Haim Y (1994) A non-probabilistic concept of reliability. Struct Saf 14(4):227–245

    Article  Google Scholar 

  • Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam

    Chapter  Google Scholar 

  • Chen Q (2008) S. University, Shanghai, Chi, Area Formulas of Hyperspherical Caps in R~n and their Applications. Communication on Applied Mathematics & Computation 22(1):76–82

    Article  MathSciNet  Google Scholar 

  • Chen N, Yu DJ, Xia BZ, Ma ZD (2016) Topology optimization of structures with interval random parameters. Comput Methods Appl Mech Eng 307:300–315

    Article  MathSciNet  Google Scholar 

  • Cho KH, Park JY, Ryu SP, Park JY, Han SY (2011) Reliability-based topology optimization based on bidirectional evolutionary structural optimization using multi-objective sensitivity numbers. Int J Automot Technol 12(6):849–856

    Article  Google Scholar 

  • Elishakoff I (1995) Essay on uncertainties in elastic and viscoelastic structures: From A. M. Freudenthal's criticisms to modern convex modeling. Comput Struct 56(6):871–895

    Article  Google Scholar 

  • Guo X, Zhang WS, Zhang L (2013) Robust structural topology optimization considering boundary uncertainties. Comput Methods Appl Mech Eng 253(1):356–368

    Article  MathSciNet  Google Scholar 

  • Hao P, Wang YT, Liu C, Wang B, Wu H (2017a) A novel non-probabilistic reliability-based design optimization algorithm using enhanced chaos control method. Computer Methods in Applied Mechanics & Engineering 318

  • Hao P, Wang Y, Liu XX, Wang B, Li G, Wang LP (2017b) An efficient adaptive-loop method for non-probabilistic reliability-based design optimization. Comput Methods Appl Mech Eng 324:689–711

    Article  MathSciNet  Google Scholar 

  • Jamshidinia M, Kovacevic R (2015) The influence of heat accumulation on the surface roughness in powder-bed additive manufacturing. Academic Achievement 3(1):014003

    Google Scholar 

  • Jiang C, Han X, Liu WX, Liu J, Zhang Z (2012) A hybrid reliability approach based on probability and interval for uncertain structures. J Mech Des 134(3):031001

    Article  Google Scholar 

  • Jiang C, Bi RG, Lu GY, Han X (2013) Structural reliability analysis using non-probabilistic convex model. Comput Methods Appl Mech Eng 254(2):83–98

    Article  MathSciNet  Google Scholar 

  • Jiang C, Ni BY, Han X, Tao YR (2014) Non-probabilistic convex model process: A new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems. Comput Methods Appl Mech Eng 268(1):656–676

    Article  MathSciNet  Google Scholar 

  • Jung HS, Cho S (2004) Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties. Finite Elements in Analysis & Design 41(3):311–331

    Article  Google Scholar 

  • Kang Z (2005) Robust design optimization of structures under uncertainties. University of Stuttgart, Shaker, p. 162

  • Kang Z, Luo YJ (2009) Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput Methods Appl Mech Eng 198(41–44):3228–3238

    Article  MathSciNet  Google Scholar 

  • Kang Z, Zhang W (2016) Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data. Comput Methods Appl Mech Eng 300:461–489

    Article  MathSciNet  Google Scholar 

  • Kennedy GJ, Martins JRRA (2014) A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures. Finite Elements in Analysis & Design 87:56–73

    Article  Google Scholar 

  • Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscip Optim 26(5):295–307

    Article  Google Scholar 

  • Kim C, Wang SY, Rae KR, Moon H, Choi KK (2006) Reliability-based topology optimization with uncertainties. J Mech Sci Technol 20(4):494–504

    Article  Google Scholar 

  • Liang QQ, Steven GP (2002) A performance-based optimization method for topology design of continuum structures with mean compliance constraints. Comput Methods Appl Mech Eng 191(13–14):1471–1489

    Article  Google Scholar 

  • Liu J, Wen GL, Zuo HZ, Qing QX (2016) A simple reliability-based topology optimization approach for continuum structures using a topology description function. Eng Optim 48(7):1182–1201

    Article  MathSciNet  Google Scholar 

  • Liu J, Wen GL, Qing QX, Xie YM (2017) An efficient method for topology optimization of continuum structures in the presence of uncertainty in loading direction. International Journal of Computational Methods 14(5):1750054

    Article  MathSciNet  Google Scholar 

  • López C, Baldomir A, Hernández S (2017) The relevance of reliability-based topology optimization in early design stages of aircraft structures. Struct Multidiscip Optim 2:1–23

    Google Scholar 

  • Luo YJ, Kang Z, Luo Z, Li A (2009) Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Struct Multidiscip Optim 39(3):297–310

    Article  MathSciNet  Google Scholar 

  • Luo YJ, Kang Z, Yue ZF (2012) Maximal stiffness design of two-material structures by topology optimization with nonprobabilistic reliability. AIAA J 50(50):1993–2003

    Article  Google Scholar 

  • Luo YJ, Zhou MD, Wang MY, Deng Z (2014a) Reliability based topology optimization for continuum structures with local failure constraints. Comput Struct 143:73–84

    Article  Google Scholar 

  • Luo Y, Zhou M, Wang MY, Deng Z (2014b) Reliability based topology optimization for continuum structures with local failure constraints. Comput Struct 143:73–84

    Article  Google Scholar 

  • Mashayekhi M, Salajegheh E, Salajegheh J, Fadaee MJ (2012) Reliability-based topology optimization of double layer grids using a two-stage optimization method. Struct Multidiscip Optim 45(6):815–833

    Article  MathSciNet  Google Scholar 

  • Mei YL, Wang XM (2004) A level set method for structural topology optimization and its applications. Comput Methods Appl Mech Eng 35(7):415–441

    MATH  Google Scholar 

  • Mi JH, Li YF, Yang YJ, Peng WW, Huang HZ (2016) Reliability assessment of complex electromechanical systems under epistemic uncertainty. Reliab Eng Syst Saf 152:1–15

    Article  Google Scholar 

  • Penmetsa RC, Grandhi RV (2002) Efficient estimation of structural reliability for problems with uncertain intervals. Comput Struct 80(12):1103–1112

    Article  Google Scholar 

  • Qiu ZP, Elishakoff I (1998) Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Comput Methods Appl Mech Eng 152(3):361–372

    Article  Google Scholar 

  • Romero JS, Silva ECN (2014) A topology optimization approach applied to laminar flow machine rotor design. Comput Methods Appl Mech Eng 279(279):268–300

    Article  MathSciNet  Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318

    Article  Google Scholar 

  • Tempelman E, Shercliff H, Eyben BNV (2014) Additive Manufacturing

    Chapter  Google Scholar 

  • Torii AJ, Novotny AA, Santos RB (2016) Robust compliance topology optimization based on the topological derivative concept. Int J Numer Methods Eng 106(11):889–903

    Article  MathSciNet  Google Scholar 

  • Tsavdaridis KD (2015) Applications of Topology Optimization in Structural Engineering: High - Rise Buildings and Steel Components. Jordan Journal of Civil Engineering 9(3):335–357

    Article  Google Scholar 

  • Wang X, Wang L (2011) Uncertainty quantification and propagation analysis of structures based on measurement data. Math Comput Model 54(11–12):2725–2735

    Article  MathSciNet  Google Scholar 

  • Wang XJ, Wang L, Elishakoff I, Qiu ZP (2011a) Probability and convexity concepts are not antagonistic. Acta Mech 219(1–2):45–64

    Article  Google Scholar 

  • Wang X, Wang L, Elishakoff I, Qiu Z (2011b) Probability and convexity concepts are not antagonistic. Acta Mech 219(1–2):45–64

    Article  Google Scholar 

  • Wang L, Wang XJ, Xia Y (2014a) Hybrid reliability analysis of structures with multi-source uncertainties. Acta Mech 225(2):413–430

    Article  Google Scholar 

  • Wang X, Wang L, Qiu Z (2014b) A feasible implementation procedure for interval analysis method from measurement data. Appl Math Model 38(9–10):2377–2397

    Article  MathSciNet  Google Scholar 

  • Wang L, Wang X, Xia Y (2014c) Hybrid reliability analysis of structures with multi-source uncertainties. Acta Mech 225(2):413–430

    Article  Google Scholar 

  • Wang L, Wang XJ, Su H, Lin GP (2016) Reliability estimation of fatigue crack growth prediction via limited measured data. Int J Mech Sci 121:44–57

    Article  Google Scholar 

  • Wang L, Wang XJ, Li YL, Lin GP, Qiu ZP (2017) Structural time-dependent reliability assessment of the vibration active control system with unknown-but-bounded uncertainties. Structural Control & Health Monitoring

  • Wolkowicz H, Saigal R, Vandenberghe L (2000) Handbook of semidefinite programming: theory, algorithms and applications. Kluwer, Dordrecht

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Yang RJ, Chahande AI (1995) Automotive applications of topology optimization. Structural Optimization 9(3–4):245–249

    Article  Google Scholar 

  • Zhao QH, Chen XK, Ma ZD, Lin Y (2015) Reliability-based topology optimization using stochastic response surface method with sparse grid design. Math Probl Eng 2015(3–4):1–13

    MathSciNet  MATH  Google Scholar 

  • Zheng Y, Qiu Z (2018) Uncertainty propagation in aerodynamic forces and heating analysis for hypersonic vehicles with uncertain-but-bounded geometric parameters. Aerospace Science & Technology

  • Zhu JH, Zhang WH, Qiu KP (2007) Bi-directional evolutionary topology optimization using element replaceable method. Comput Mech 40(1):97–109

    Article  Google Scholar 

  • Zhu JH, Zhang WH, Beckers P, Chen YZ, Guo ZZ (2008) Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Struct Multidiscip Optim 36(1):29–41

    Article  MathSciNet  Google Scholar 

  • Zhu JH, Zhang WH, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Archives of Computational Methods in Engineering 1–28

  • Zhu JH, Zhang WH, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Archives of Computational Methods in Engineering 23(4):595–622

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Nature Science Foundation of China (11602012, 11432002), the Science and Technology Foundation of China Aerospace Science and Industrial Corporation, the Fundamental Research Funds for the Central Universities, and the Defense Industrial Technology Development Program (JCKY2016204B101, JCKY2017601B001) for the financial supports. Besides, the authors wish to express their many thanks to the reviewers for their useful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Responsible Editor: Byeng D Youn

Appendices

Appendix 1

The mean value \( {b}_j^c \) and variances \( D\left({b}_j^I\right) \) of the convex model are defined as

$$ {b}_j^c=\left(\frac{b_j^U+{b}_j^L}{2}\right),\kern0.6em j=1,2,\dots m $$
(40)
$$ D\left({b}_j^I\right)={\left({b}_j^r\right)}^2={\left(\frac{b_j^U-{b}_j^L}{2}\right)}^2,\kern0.8000001em j=1,2,\dots m $$
(41)

In the above convex model, the mean value vector bc is just the same as the central point of the ellipse as show in Fig. 3. The correlation coefficient is defined as the covariance for two uncertain parameters

$$ {\rho}_{b_i{b}_k}=\frac{\tan \left(\theta \right)}{1-{\tan}^2\left(\theta \right)}\left(D\left({b}_i^I\right)-D\left({b}_k^I\right)\right),\kern0.6em i=1,2,\dots m,k=1,2,\dots m $$
(42)

\( {\rho}_{b_i{b}_k} \) represents the degree of linear correlation of the uncertain parameters bi and bk. Based on the covariance and correlation coefficient, the correlation matrix is defined as

$$ {\boldsymbol{\uprho}}_{\mathbf{b}}=\left[\begin{array}{cccc}{\rho}_{b_1{b}_1}& {\rho}_{b_1b2}& \cdots & {\rho}_{b_1{b}_m}\\ {}{\rho}_{b_2{b}_1}& {\rho}_{b_2{b}_2}& \cdots & {\rho}_{b_2{b}_m}\\ {}\vdots & \vdots & \ddots & \vdots \\ {}{\rho}_{b_m{b}_1}& {\rho}_{b_m{b}_2}& \dots & {\rho}_{b_m{b}_m}\end{array}\right] $$
(43)

The following expression

$$ {\displaystyle \begin{array}{l}{\left(\boldsymbol{b}-{\boldsymbol{b}}^{\mathbf{c}}\right)}^T{\left({\theta}^2{\boldsymbol{\rho}}_{\boldsymbol{b}}\right)}^{-1}\left(\boldsymbol{b}-{\boldsymbol{b}}^{\mathbf{c}}\right)\\ {}={\left(\boldsymbol{b}-{\boldsymbol{b}}^{\mathbf{c}}\right)}^T{\left({\theta}^2\left[\begin{array}{cccc}{\rho}_{b_1{b}_1}& {\rho}_{b_1b2}& \cdots & {\rho}_{b_1{b}_m}\\ {}{\rho}_{b_2{b}_1}& {\rho}_{b_2{b}_2}& \cdots & {\rho}_{b_2{b}_m}\\ {}\vdots & \vdots & \ddots & \vdots \\ {}{\rho}_{b_m{b}_1}& {\rho}_{b_m{b}_2}& \dots & {\rho}_{b_m{b}_m}\end{array}\right]\right)}^{-1}\left(\boldsymbol{b}-{\boldsymbol{b}}^{\mathbf{c}}\right)\le {\theta}^2\end{array}} $$
(44)

determines an ellipsoidal convex model. Then it yields

$$ {\left(\mathbf{b}-{\mathbf{b}}^{\mathbf{c}}\right)}^T\mathbf{W}\left({\mathbf{b}}^{\mathbf{r}},{\boldsymbol{\uprho}}_{\mathbf{b}}\right)\left(\mathbf{b}-{\mathbf{b}}^{\mathbf{c}}\right)\le {\theta}^2 $$
(45)

where \( \mathbf{W}\left({\mathbf{b}}^{\mathbf{r}},{\boldsymbol{\uprho}}_{\mathbf{b}}\right)={\left({\theta}^2\left[\begin{array}{cccc}D\left({b}_1^I\right)& Cov\left({b}_1,{b}_2\right)& \cdots & Cov\left({b}_1,{b}_m\right)\\ {} Cov\left({b}_2,{b}_1\right)& D\left({b}_2^I\right)& \cdots & Cov\left({b}_2,{b}_m\right)\\ {}\vdots & \vdots & \ddots & \vdots \\ {} Cov\left({b}_m,{b}_1\right)& Cov\left({b}_m,{b}_2\right)& \dots & D\left({b}_m^I\right)\end{array}\right]\right)}^{-1} \).

Appendix 2

In order to find the reliability index Ri by (16), HVsafe and HVtotal are need to solve firstly. For m = 2, as shows in Fig. 4a, it yields

$$ {R}_i={\left.\frac{S_{safe}}{S_{total}}\right|}_i $$
(46)

Sfailure can be calculated by making use of the sector area formula and the triangle area formula, namely,

$$ {S}_{failure}={S}_{\sec tor}-{S}_{triangle}=\frac{2\operatorname{arccos}{d}_i}{2}-\frac{2\sqrt{1-{d}_i^2}\times {d}_i}{2}=\operatorname{arccos}{d}_i-{d}_i\sqrt{1-{d}_i^2} $$
(47)

then Ssafe and the reliability index Ri can be obtained

$$ {S}_{safe}={S}_{total}-{S}_{failure}=\pi -\left(\operatorname{arccos}{d}_i-{d}_i\sqrt{1-{d}_i^2}\right) $$
(48)

and

$$ {R}_i={\left.\frac{S_{safe}}{S_{total}}\right|}_i=\frac{\pi -\left(\operatorname{arccos}{d}_i-{d}_i\sqrt{1-{d}_i^2}\right)}{\pi }=1-\frac{\operatorname{arccos}{d}_i-{d}_i\sqrt{1-{d}_i^2}}{\pi } $$
(49)

For m = 3, as shows in Fig. 4b, it yields

$$ {R}_i={\left.\frac{V_{safe}}{V_{total}}\right|}_i $$
(50)

similarly, Vfailure can be calculated by making use of the spherical cap volume formula, namely,

$$ {V}_{failure}={V}_{cap}=\pi {\left(1-{d}_i\right)}^2\left(1-\frac{1-{d}_i}{3}\right) $$
(51)

then Vsafe and the reliability index Ri can be obtained

$$ {V}_{safe}={V}_{total}-{V}_{failure}=\frac{4}{3}\pi \times {1}^3-\pi {\left(1-{d}_i\right)}^2\left(1-\frac{1-{d}_i}{3}\right)=\frac{4\pi -\pi {\left(1-{d}_i\right)}^2\left(2+{d}_i\right)}{3} $$
(52)

and

$$ {R}_i={\left.\frac{V_{safe}}{V_{total}}\right|}_i=\frac{\frac{1}{3}\left[4\pi -\pi {\left(1-{d}_i\right)}^2\left(2+{d}_i\right)\right]}{\frac{4}{3}\pi \times {1}^3}=1-\frac{2-3{d}_i+{d_i}^3}{4} $$
(53)

Combining (49) and (53), it yields

$$ {R}_i={\left.\frac{HV_{safe}}{HV_{total}}\right|}_i=\left\{\begin{array}{l}1-\frac{\operatorname{arccos}{d}_i-{d}_i\sqrt{1-{d}_i^2}}{\pi },m=2\\ {}1-\frac{2-3{d}_i+{d}_i^3}{4},m=3\end{array}\right. $$
(54)

this is exactly (17).

For multidimensional cases (m > 3), considering the complicated calculation process and numerous formulas, (18) is no longer derived in detail and the results in Ref (Chen 2008; Jiang et al. 2013) are directly listed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liang, J. & Wu, D. A non-probabilistic reliability-based topology optimization (NRBTO) method of continuum structures with convex uncertainties. Struct Multidisc Optim 58, 2601–2620 (2018). https://doi.org/10.1007/s00158-018-2040-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-2040-1

Keywords

Navigation