Skip to main content
Log in

Multi-fidelity POD surrogate-assisted optimization: Concept and aero-design study

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We combine multiple sets of variable-precision full-field simulations within a single surrogate model. The approach is based on an original formulation of the “Constrained Proper Orthogonal Decomposition” (C-POD), interpolating precise, albeit costly, high-fidelity data and approximating abondant, yet less accurate, lower-fidelity data. We compute the optimal high-dimensional subspace spanning the sparse high-fidelity full-field solutions and refine the output subspace definition thanks to the orthogonal information contained in abondant low-fidelity full-field solutions. We then build “hierarchised” multi-fidelity surrogate models based on the previously refined subspace and giving a fast estimation of the high-fidelity full-field solution of any new location in the design space. The proposed model is illustrated by exploring the prediction of an analytical 2D functional space on the one hand, and demonstrated by studying the efficiency of a 1.5-stage low-pressure compressor on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Balabanov V, Grossman B, Watson L, Mason W, Haftka R T (1998) Multifidelity response surface model for hsct wing bending material weight Multidisciplinary analysis optimization conferences. American Institute of Aeronautics and Astronautics. doi:10.2514/6.1998-4804

    Google Scholar 

  • Bishop C M (1995) Neural networks for pattern recognition. Advanced texts in econometrics. Clarendon Press

  • Bui-Thanh T (2003) Proper orthogonal decomposition extensions and their applications in steady aerodynamics. Master’s thesis, Ho Chi Minh City University of Technology

  • Cambier L, Heib S, Plot S (2013) The onera elsa cfd software : input from research and feedback from industry. Mechanics & Industry 14(3):159–174. doi:10.1051/meca/2013056

    Article  Google Scholar 

  • Chen P P, Yang Q W, Farhan Ali S, Hashmi P J S, Zhao L (2012) Passive control of hub-corner separation/stall using axisymmetric-hub contouring, 226, pp 1214–1224. doi:10.1177/0954410011421716

  • Colombo E (2011) Investigation on the three-dimensional flow mechanisms in annular axial compressor cascades for aero engines with flow control by aspiration on the hub and on the blades. PhD diss, STI, Lausanne. doi:10.5075/epfl-thesis-5241

  • Dorfner C, Hergt A, Nicke E, Moenig R (2011) Advanced non-axisymmetric endwall contouring for axial compressors by generating and aerodynamic separator - part i: Principal cascade design and compressor application. J Turbomach 133(2):21–26. doi:10.1115/1.4001223

    Article  Google Scholar 

  • Filomeno Coelho R, Breitkopf P, Knopf-Lenoir C (2008) Model reduction for multidisciplinary optimization - application to a 2d wing. Struct Multidiscip Optim 37(1):29–48. doi:10.1007/s00158-007-0212-5

    Article  MATH  Google Scholar 

  • Forrester A I J, Keane A J (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45 (1-3):50–79. doi:10.1016/j.paerosci.2008.11.001

    Article  Google Scholar 

  • Forrester A I J, Sóbester A, Keane A J (2007) Multi-fidelity optimization via surrogate modelling. In: Proceedings of the royal society a: Mathematical, physical and engineering sciences, vol 463, pp 3251–3269. doi:10.1098/rspa.2007.1900

  • Forrester A I J, Sóbester A, Keane A J (2008) Engineering design via surrogate modelling : A practical guide. Wiley. doi:10.1002/9780470770801

  • Guénot M, Lepot I, Sainvitu C, Goblet J, Filomeno Coelho R (2011) Adaptive sampling strategies for non-intrusive pod-based surrogates Proceedings of the EUROGEN 2011 evolutionary and deterministic methods for design, optimization and control. CIRA, Capua

    Google Scholar 

  • Guénot M, Lepot I, Sainvitu C, Goblet J, Filomeno Coelho R (2013) Adaptive sampling strategies for non-intrusive pod-based surrogates. Eng Comput 30(4):521–547. doi:10.1108/02644401311329352

    Article  Google Scholar 

  • Hamdaoui M, Le Quilliec G, Breitkopf P, Villon P (2013) Surrogate pod models for parametrized sheet metal forming applications Proceedings of the 16th esaform conference on material forming. doi:10.4028/www.scientific.net/KEM.554-557.919, vol 554–557, pp 919–927

  • Han Z-H, Görtz S, Hain R (2010) A variable-fidelity modeling method for aero-loads prediction. In: Dillmann A, Heller G, Klaas M, Kreplin H-P, Nitsche W, Schröder W (eds) New results in numerical and experimental fluid mechanics vii. Vol. 112 of Notes on numerical fluid mechanics and multidisciplinary design, 17–25, Springer. doi:10.1007/978-3-642-14243-7_3, ISBN 978-3-642-14242-0

    Google Scholar 

  • Han Z-H, Görtz S, Zimmermann R (2013) Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Aerosp Sci Technol 25(1):177–189. doi:10.1016/j.ast.2012.01.006

    Article  Google Scholar 

  • Han Z-H, Zimmermann R, Görtz S (2010) A new cokriging method for variable-fidelity surrogate modeling of aerodynamic data Proceedings of the 48th aiaa aerospace sciences meeting including the new horizons forum and aerospace exposition. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2010-1225

    Google Scholar 

  • Harten A (1983) High resolution schemes for hyperbolic conservation laws. J Comput Phys 49(3):357–393. doi:10.1016/0021-9991(83)90136-5

    Article  MATH  MathSciNet  Google Scholar 

  • Hoeger M, Cardamone P, Fottner L (2002) Influence of endwall contouring on the transonic flow in a compressor blade Proceedings of asme turboexpo 2002. doi:10.1115/GT2002-30440. ISBN 978-0-7918-3610-1. ASME, Amsterdam, pp 759–768

    Google Scholar 

  • Holmes P, Lumley J L, Berkooz G, Rowley C W (2012) Turbulence, coherent structures, dynamical systems and symmetry, 2nd edn. Cambridge University Press. doi:10.1017/CBO9780511919701. Cambridge Books Online

  • Hu S, Lu X, Zhang H, Zhu J, Xu Q (2010) Numerical investigation of a high-subsonic axial-flow compressor rotor with non-axisymmetric hub endwall. J Therm Sci 19(1):14–20. doi:10.1007/s11630-010-0014-8

    Article  Google Scholar 

  • Huang L, Gao Z, Zhang D (2013) Research on multi-fidelity aerodynamic optimization methods. Chin J Aeronaut 26(2):279–286. doi:10.1016/j.cja.2013.02.004

    Article  Google Scholar 

  • Keane A J (2003) Wing optimization using design of experiment, response surface, and data fusion methods. J Aircr 40:741–750. doi:10.2514/2.3153

    Article  Google Scholar 

  • Keane A J (2012) Cokriging for robust design optimization. AIAA Journal 50(11):2351–2364. doi:10.2514/1.J051391

    Article  Google Scholar 

  • Keane A J, Nair P B (2005) Computational approaches for aerospace design: The prusuit of excellence. Wiley. doi:10.1002/0470855487

  • Kennedy M C, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1–13. doi:10.1093/biomet/87.1.1

    Article  MATH  MathSciNet  Google Scholar 

  • Kröger G, Voß C, Nicke E, Cornelius C (2011) Theory and application of axisymmetric endwall contouring for compressors Asme turbo expo 2011: Turbine technical conference and exposition. doi:10.1115/GT2011-45624, vol 7, pp 125–137

  • Kuya Y, Takeda K, Zhang X, Forrester A I J (2011) Multifidelity surrogate modeling of experimental and computational aerodynamic data sets. AIAA J 49(2):289–298. doi:10.2514/1.J050384

    Article  Google Scholar 

  • Launder B E, Sharma B I (1974) Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transfer 1(2):131–137. doi:10.1016/0094-4548(74)90150-7

    Article  Google Scholar 

  • Le Gratiet L, Garnier J (2014) Recursive co-kriging model for design of computer experiments with multiple levels of fidelity. Int J Uncertain Quantif 4(5):365–386. doi:10.1615/Int.J.UncertaintyQuantification.2014006914

    Article  MathSciNet  Google Scholar 

  • Leary S J, Bhaskar A, Keane A J (2003) A knowledge-based approach to response surface modelling in multifidelity optimization. J Glob Optim 26(3):297–319. doi:10.1023/A:1023283917997

    Article  MATH  MathSciNet  Google Scholar 

  • Lei V M, Spakovsky Z S, Greitzer E M (2008) A criterion for axial compressor hub-corner stall. J Turbomach 130(3):10. doi:10.1115/1.2775492

    Article  Google Scholar 

  • Lepot I, Mengistu T, Hiernaux S, De Vriendt O (2011) Highly loaded lpc blade and non axisymmetric hub profiling optimization for enhanced efficiency and stability Asme turbo expo 2011: Turbine technical conference and exposition. doi:10.1115/GT2011-46261, vol 7, pp 285–295

  • Lumley J L (1967) The structure of inhomogeneous turbulent flows. In: Yaglom A M, Tatarski V I (eds) Atmospheric turbulence and radio propagation. Nauka, pp 166–178

  • March A, Willcox K (2012) Constrained multifidelity optimization using model calibration. Struct Multidiscip Optim 46(1):93–109. doi:10.1007/s00158-011-0749-1

    Article  MATH  Google Scholar 

  • Mifsud M J, MacManus D G, Shaw S T (2016) A variable-fidelity aerodynamic model using proper orthogonal decomposition. International Journal for Numerical Methods in Fluids. doi:10.1002/fld.4234

  • Moore J, Shaffer D M, Moore J G (1987) Reynolds stresses and dissipation mechanisms downstream of a turbine cascade. J Turbomach 109(2):258–267. doi:10.1115/1.3262096

    Article  Google Scholar 

  • Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: Diffuse approximation and diffuse elements. Comput Mech 10(5):307–318. doi:10.1007/BF00364252

    Article  MATH  Google Scholar 

  • Perdikaris P, Venturi D, Royset J O, Karniadakis G E (2015) Multi-fidelity modelling via recursive co-kriging and gaussian–markov random fields Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 471 (2179). doi:10.1098/rspa.2015.0018

    Google Scholar 

  • Rasmussen C E, Williams C K I (2006) Gaussian processes for machine learning. MIT Press

  • Reising S, Schiffer H-P (2009) Non-axisymmetric end wall profiling in transonic compressors – part ii: Design study of a transonic compressor rotor using non-axisymmetric end walls – optimization strategies and performance Asme turbo expo 2009: Power for land, sea, and air. doi:10.1115/GT2009-59134, vol 7

  • Rippa S (1999) An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv Comput Math 11(2-3):193–210. doi:10.1023/A:1018975909870

    Article  MATH  MathSciNet  Google Scholar 

  • Roe P L (1981) Approximate riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43 (2):357–372. doi:10.1016/0021-9991(81)90128-5

    Article  MATH  MathSciNet  Google Scholar 

  • Saka Y, Gunzburger M, Burkardt J (2007) Latinized, improved lhs, and cvt point sets in hypercubes. Int J Numer Anal Model 4(3-4):729– 743

    MATH  MathSciNet  Google Scholar 

  • Shinde V, Longatte E, Baj F, Hoarau Y, Braza M (2016) A galerking-free model reduction approach for the navier-stokes equations. J Comput Phys 309:148–163

    Article  MATH  MathSciNet  Google Scholar 

  • Smola A J, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222. doi:10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  • Toal D J, Keane A J (2011) Efficient multipoint aerodynamic design optimization via cokriging. J Aircr 48 (5):1685–1695. doi:10.2514/1.C031342

    Article  Google Scholar 

  • Tromme E, Brüls O, Emonds-Alt J, Bruyneel M, Virlez G, Duysinx P (2013) Discussion on the optimization problem formulation of flexible components in multibody systems. Struct Multidiscip Optim 48 (6):1189–1206. doi:10.1007/s00158-013-0952-3

    Article  MathSciNet  Google Scholar 

  • Wang G (2003) Adaptive response surface method using inherited latin hypercube design points. J Mech Des 125(2):210–220. doi:10.1115/1.1561044

    Article  Google Scholar 

  • Xiao D, Fang F, Buchan A G, Pain C C, Navon I M, Muggeridge A (2015) Non-intrusive reduced order modelling of the navier-stokes equations. Comput Methods Appl Mech Eng 293:522–541. doi:10.1016/j.cma.2015.05.015

    Article  MathSciNet  Google Scholar 

  • Xiao M, Breitkopf P, Filomeno Coelho R, Knopf-Lenoir C, Sidorkiewicz M, Villon P (2010) Model reduction by cpod and kriging. Struct Multidiscip Optim 41(4):555–574. doi:10.1007/s00158-009-0434-9

    Article  MATH  MathSciNet  Google Scholar 

  • Xiao M, Breitkopf P, Filomeno Coelho R, Knopf-Lenoir C, Villon P, Zhang W (2013) Constrained proper orthogonal decomposition based on qr-factorization for aerodynamical shape optimization. Appl Math Comput 223:254–263. doi:10.1016/j.amc.2013.07.086

    MATH  MathSciNet  Google Scholar 

  • Xiao M, Breitkopf P, Filomeno Coelho R, Villon P, Zhang W (2014) Proper orthogonal decomposition with high number of linear constraints for aerodynamical shape optimization. Appl Math Comput 247:1096–1112. doi:10.1016/j.amc.2014.09.068

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The present work was partly founded by the Association Nationale de la Recherche et Technologie, as well as the Walloon Region (SW EI- OPT Convention 7173) in the frame of the EI-OPT project fostered by Skywin. The authors would like to thank Safran Aircraft Engines and Safran Aero Boosters for their support and permission to publish this study and especially Dr. Stéphane Hiernaux and Ir. Abdelkader Otsmane for their technical support in this research project. Last but not least, the authors would like to acknowledge the anonymous reviewers whose comments helped improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Benamara.

Appendices

Appendix A: T H and T L detailed derivations

By construction,

$$ {\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}}={\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top}}+{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}. $$
(A.1)

We use the definition in (2.5) (\(\bar {\mathbf {z}}=\bar {\mathbf {y}}+\mathbf {d}\)) and develop (2.1) giving \(\mathbf {y}_{i}-\bar {\mathbf {y}}\in \text {Im}\boldsymbol {\Phi }\subset \text {Im} \boldsymbol {\Psi }{\textrm {I\kern -0.21em}}\Rightarrow {\left (\mathbf {I}-{\boldsymbol {\Psi }\boldsymbol {\Psi }^{\top }}\right )}\left (\mathbf {y}_{i}-\bar {\mathbf {y}}\right )=0\). Considering in addition the property given in (2.9) (Φ d = 0) yields the decomposition

$$\begin{array}{@{}rcl@{}} {\left(\mathbf{I}\!-{\!\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}}\right)\left(\mathbf{y}_{i}\,-\,\bar{\mathbf{z}}\right)} &\,=\,& {\left(\mathbf{I}\,-\,{\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}}\right)}\left(\mathbf{y}_{i}\!-\bar{\mathbf{\!y}}\right) \,-\, {\left(\mathbf{I}-{\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}}\right)}\mathbf{d} \end{array} $$
$$\begin{array}{@{}rcl@{}} &=& - {\left(\mathbf{I}-{\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}}\right)}\mathbf{d} \end{array} $$
$$\begin{array}{@{}rcl@{}} &=& - {\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)}\mathbf{d} - {\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top}}\mathbf{d} \end{array} $$
$$\begin{array}{@{}rcl@{}} &=& - {\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)}\mathbf{d} \end{array} $$
(A.2)

Introducing this result into (2.4) reduces its first term to

$$ \mathbf{T}_{H} = \frac{M_{H}}{2}\mathbf{d}^{\top} {\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)}\mathbf{d}, $$
(A.3)

as introduced in (2.10).

Considering \({\boldsymbol {\Phi }^{\top } \boldsymbol {\Phi }}=\mathbf {I}_{M_{H}}\), we can further develop (IΨ Ψ )(IΦ Φ ) with (A.1) and (2.7) (\(\boldsymbol {\Phi }^{\top }\boldsymbol {\Xi }=\mathbf {0}_{(M_{H}\times M_{L})}\)) as follows :

$$\begin{array}{@{}rcl@{}} {\left(\mathbf{I}\!-{\boldsymbol{\!{\Psi}}\boldsymbol{\Psi}^{\top}}\right)}{\left(\mathbf{I}\,-\,{\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top}}\right)} &\,=\,& {\left(\mathbf{I}\,-\,{\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top}}\right)}{\left(\mathbf{I}-{\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top}}\right)}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}{\left(\mathbf{I}-{\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top}}\right)}\\ &=& \mathbf{I}-2{\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top}}+{\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top}}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}{\left(\mathbf{I}-{\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top}}\right)}\\ &=& {\left(\mathbf{I}-{\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}}\right)} \end{array} $$
(A.4)

Using (2.1), (2.9), and (A.4) we modify the inner term in T L ,

$${\left(\mathbf{I}-{\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}}\right)}\left(\mathbf{z}_{i}-\bar{\mathbf{z}}\right) = {\left(\mathbf{I}-{\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}}\right)}{\left(\mathbf{I}-{\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top}}\right)}\left[\mathbf{z}_{i}-\mathbf{d}\right]. $$

We introduce (see (2.12))

$$ {\mathbf{z}_{i}}^{\perp} = {\left(\mathbf{I}-{\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top}}\right)}{\mathbf{z}_{i}}, $$
(A.5)

into the previous equation,

$${\left(\mathbf{I}\,-\,{\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}}\right)}\left({\mathbf{z}_{i}}\,-\,\bar{\mathbf{z}}\right) \,=\, {\left(\mathbf{I}-{\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}}\right)}\left({\mathbf{z}_{i}}^{\perp}-{\left(\mathbf{I}-{\boldsymbol{\Psi}\boldsymbol{\Psi}^{\top}}\right)}\mathbf{d}\right), $$

and use (2.9) to obtain (2.11)

$$ \mathbf{T}_{L} = \frac{1}{2}\sum\limits_{i=1}^{M_{L}}\left\Vert{\left(\mathbf{I} -{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right)\right\Vert^{2}_{{\textrm{I\kern-0.21emR}}^{n}}. $$
(A.6)

Appendix B: Optimality condition of \(\mathcal {J}\left (\mathbf {d},\boldsymbol {\Xi }\right )\)

The optimality of \(\mathcal {J}\left (\mathbf {d},\boldsymbol {\Xi }\right )\) w.r.t d satisfies

$$ \left\langle\frac{\partial \mathcal{J}}{\partial\mathbf{d}},\delta\mathbf{d}\right\rangle = 0~\forall~\delta\mathbf{d}\in Im~\mathbf{Q}_{2}, $$
(B.1)

with

$$\left\langle\frac{\partial \mathcal{J}}{\partial\mathbf{d}},\delta\mathbf{d}\right\rangle =-\delta\mathbf{d}^{\top}\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)\left[\mathbf{d}-\frac{M_{L}\cdot\boldsymbol{\mu}\left(\mathbf{Z}^{\perp}\right)}{\left(M_{H}+M_{L}\right)}\right] . $$

The optimal d has to satisfy the condition \(\displaystyle \mathbf {d}_{\text {opt}}-\frac {M_{L}}{M_{H}+M_{L}}\boldsymbol {\mu }(\mathbf {Z}^{\perp })\in Im~\boldsymbol {\Xi }\), which is possible as both d and z i ∈(I m Φ)i ∈ [ [1,M L ] ].

For the sake of simplicity, we impose

$$ \mathbf{d}_{\text{opt}}=\frac{M_{L}}{M_{H}+M_{L}}\boldsymbol{\mu}\left(\mathbf{Z}^{\perp}\right), $$
(B.2)

and introduce

$$ \mathbf{z}^{\perp}_{0} = \left(\sqrt{M_{H}}+1\right)\mathbf{d}_{\text{opt}}. $$
(B.3)

For the sake of readability, we refer to d opt as d in the following derivations, as well as to \(\mathcal {J}\left (\mathbf {d}_{\text {opt}},\boldsymbol {\Xi }\right )\) as \(\mathcal {J}\left (\boldsymbol {\Xi }\right )\):

$$\begin{array}{@{}rcl@{}} \mathcal{J}\left(\boldsymbol{\Xi}\right)\, &=&\frac{M_{H}}{2}\mathbf{d}^{\top}\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)\mathbf{d}\\ &&+ \frac{1}{2}\sum\limits_{i=1}^{M_{L}}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right)^{\top}{\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right)\\ &=&+\frac{1}{2}\left(\sqrt{M_{H}}\mathbf{d}^{\top}\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)\sqrt{M_{H}}\mathbf{d}\right)\\ &&+ \frac{1}{2}\sum\limits_{i=1}^{M_{L}}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right)^{\top}{\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right)\\ &=&+\frac{1}{2}\left((\sqrt{M_{H}}+1\,-\,1)\mathbf{d}^{\top}\left(\mathbf{I}-\!{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)(\sqrt{M_{H}}\,+\,1\,-\,1)\mathbf{d}\right)\\ &&+ \frac{1}{2}\sum\limits_{i=1}^{M_{L}}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right)^{\top}{\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right)\\ &=&+\frac{1}{2}\sum\limits_{i=1}^{M_{L}}\left(\mathbf{z}^{\perp}_{0}-\mathbf{d}\right)^{\top}\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)\left(\mathbf{z}^{\perp}_{0}-\mathbf{d}\right)\\ &&+ \frac{1}{2}\sum\limits_{i=1}^{M_{L}}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right)^{\top}{\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right)\\ &=&+\frac{1}{2}\sum\limits_{i=0}^{M_{L}}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right)^{\top}{\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right). \end{array} $$

To complete the basis Ψ = [ΦΞ], we now seek Ξ satisfying

$$\begin{array}{@{}rcl@{}} \underset{\boldsymbol{\Xi}}{\min}~\frac{1}{2}\sum\limits_{i=0}^{M_{L}}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right)^{\top}{\left(\mathbf{I}-{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)}\left({\mathbf{z}_{i}}^{\perp}-\mathbf{d}\right), \end{array} $$
$$\begin{array}{@{}rcl@{}} \text{s.t} \end{array} $$
$$\begin{array}{@{}rcl@{}} {\boldsymbol{\Xi}^{\top} \boldsymbol{\Xi}}=\mathbf{I}_{m_{L}} \text{ with } m_{L}\leq M_{L}, \end{array} $$
$$\begin{array}{@{}rcl@{}} \boldsymbol{\Phi}^{\top}\boldsymbol{\Xi}=\mathbf{0}. \end{array} $$
(B.4)

Equation (B.4) implies ΞI m Q 2 ⇒∃t, Ξ = Q 2 t, where Q 2 is the orthonormal basis given by the first QR-decomposition (2.3) spanning (I m Φ), and t is a (nM H ) × m L real-valued matrix. Keeping in mind the orthonormality of Q 2, \(\mathbf {Q}_{2}^{\top }\mathbf {Q}_{2}=\mathbf {I}_{n-M_{H}}\) yields \(\mathbf {t}^{\top }\mathbf {t}=\mathbf {t}^{\top }\mathbf {Q}_{2}^{\top }\mathbf {Q}_{2}\mathbf {t}={\boldsymbol {\Xi }^{\top } \boldsymbol {\Xi }}=\mathbf {I}_{m_{L}}\).

One can notice that z i dI m Q 2i ∈ [ [0,M L ] ], and introduce \(\mathbf {u}_{i}\in {\textrm {I\kern -0.21emR}}^{(n-M_{H})}\), such that z i d = Q 2 u i .

By replacing Ξ and z i d, respectively with Q 2 t and Q 2 u i in (B.4), we obtain:

$$\begin{array}{@{}rcl@{}} {\left({\mathbf{z}_{i}}^{\perp}\!-\mathbf{d}\right)^{\top}{\left(\mathbf{I}\,-\,{\boldsymbol{\Xi}\boldsymbol{\Xi}^{\top}}\right)}\left({\mathbf{z}_{i}}^{\perp}\,-\,\mathbf{d}\right)} &=& \mathbf{u}_{i}^{\top}\mathbf{Q}_{2}^{\top}\left(\mathbf{I}-\mathbf{Q}_{2}\mathbf{t}\mathbf{t}^{\top}\mathbf{Q}_{2}^{\top}\right)\mathbf{Q}_{2}\mathbf{u}_{i}\\ &=&\mathbf{u}_{i}^{\top}\mathbf{Q}_{2}^{\top}\mathbf{Q}_{2}\mathbf{u}_{i}\\ &&-\mathbf{u}_{i}^{\top}\mathbf{Q}_{2}^{\top}\mathbf{Q}_{2}\mathbf{t}\mathbf{t}^{\top}\mathbf{Q}_{2}^{\top}\mathbf{Q}_{2}\mathbf{u}_{i}\\ &=&\mathbf{u}_{i}^{\top}\mathbf{u}_{i}\\ &&-\mathbf{u}_{i}^{\top}\mathbf{t}\mathbf{t}^{\top}\mathbf{u}_{i}\\ &=&\mathbf{u}_{i}^{\top}{\left(\mathbf{I}-{\boldsymbol{\mathrm{t}}\boldsymbol{\mathrm{t}}^{\top}}\right)}\mathbf{u}_{i}. \end{array} $$
(B.5)

The completion problem is therefore reduced to

$$\begin{array}{@{}rcl@{}} \underset{\mathbf{t}}{\min}~\frac{1}{2}\sum\limits_{i=0}^{M_{L}}\mathbf{u}_{i}^{\top}{\left(\mathbf{I}-{\boldsymbol{\mathrm{t}}\boldsymbol{\mathrm{t}}^{\top}}\right)}\mathbf{u}_{i}, \end{array} $$
$$\begin{array}{@{}rcl@{}} \text{s.t} \end{array} $$
$$\begin{array}{@{}rcl@{}} {\boldsymbol{\mathrm{t}}^{\top} \boldsymbol{\mathrm{t}}}=\mathbf{I}_{m_{L}} \text{ with } m_{L}\leq M_{L}, \end{array} $$
(B.6)

which defines a classical POD problem on t.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benamara, T., Breitkopf, P., Lepot, I. et al. Multi-fidelity POD surrogate-assisted optimization: Concept and aero-design study. Struct Multidisc Optim 56, 1387–1412 (2017). https://doi.org/10.1007/s00158-017-1730-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1730-4

Keywords

Navigation