Skip to main content
Log in

Multifidelity surrogate modeling based on radial basis functions

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Multiple models of a physical phenomenon are sometimes available with different levels of approximation. The high fidelity model is more computationally demanding than the coarse approximation. In this context, including information from the lower fidelity model to build a surrogate model is desirable. Here, the study focuses on the design of a miniaturized photoacoustic gas sensor which involves two numerical models. First, a multifidelity metamodeling method based on Radial Basis Function, the co-RBF, is proposed. This surrogate model is compared with the classical co-kriging method on two analytical benchmarks and on the photoacoustic gas sensor. Then an extension to the multifidelity framework of an already existing RBF-based optimization algorithm is applied to optimize the sensor efficiency. The co-RBF method does not bring better results than co-kriging but can be considered as an alternative for multifidelity metamodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bauer R, Stewart G, Johnstone W, Boyd E, Lengden M (2014) 3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases. Opt Lett 39(16):4796–4799. doi:10.1364/OL.39.004796

    Article  Google Scholar 

  • Costa JP, Pronzato L, Thierry E (1999) A comparison between Kriging and radial basis function networks for nonlinear prediction. In: Nonlinear signal and image processing, pp 726–730

  • Currin C, Mitchell T, Morris M, Ylvisaker D (1991) Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. J Amer Stat Assoc 86(416):953. doi:10.2307/2290511

    Article  MathSciNet  Google Scholar 

  • Couckuyt I, Dhaene T, Demeester P (2014) ooDACE toolbox: a flexible object-oriented kriging implementation. J Mach Learn Res 15(1):3183–3186

    MATH  Google Scholar 

  • Dong H, Song B, Wang P, Huang S (2015) Multi-fidelity information fusion based on prediction of kriging. Struct Multidiscip Optim 51(6):1267–1280. doi:10.1007/s00158-014-1213-9

    Article  Google Scholar 

  • Dyn N, Levin D, Rippa S (1986) Numerical procedures for surface fitting of scattered data by radial functions. SIAM J Sci Stat Comput 7(2):639–659. doi:10.1137/0907043

    Article  MathSciNet  MATH  Google Scholar 

  • Forrester AI, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc A: Math Phys Eng Sci 463(2088):3251–3269. doi:10.1098/rspa.2007.1900

    Article  MathSciNet  MATH  Google Scholar 

  • Forrester AI, Sóbester A, Keane AJ (2008) Engineering design via surrogate modelling a practical guide. Wiley, Chichester, West Sussex, England; Hoboken, NJ

    Book  Google Scholar 

  • Glière A, Rouxel J, Brun M, Parvitte B, Zéninari V, Nicoletti S (2014) Challenges in the design and fabrication of a lab-on-a-chip photoacoustic gas sensor. Sensors 14(1):957–974. doi:10.3390/s140100957

    Article  Google Scholar 

  • Gutmann HM (2001) A radial basis function method for global optimization. J Global Optim

  • Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test functions. In: Yao X et al (eds) Parallel problem solving from nature PPSN VIII, vol 3242. Springer, LNCS, pp 282–291

  • Holthoff E, Heaps D, Pellegrino P (2010) Development of a mems-scale photoacoustic chemical sensor using a quantum cascade laser. Sens J IEEE 10(3):572–577. doi:10.1109/JSEN.2009.2038665

    Article  Google Scholar 

  • Jakobsson S, Andersson B, Edelvik F (2009) Rational radial basis function interpolation with applications to antenna design. J Comput Appl Math 233(4):889–904. doi:10.1016/j.cam.2009.08.058

    Article  MathSciNet  MATH  Google Scholar 

  • Jin R, Chen W, Simpson T (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23(1):1–13. doi:10.1007/s00158-001-0160-4

    Article  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Global Optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy MC, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximation are available. Biometrika 87(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Kreuzer LB (1977) The physics of signal generation and detection. In: Pao YH (ed) Optoacoustic spectroscopy and detection. Academic Press, pp 1–25

  • Krige DG (1951) A statistical approach to some basic mine valuation problems on the witwatersrand. J Chem Metallurg Min Soc South Africa 52(6):119–139

    Google Scholar 

  • Le Gratiet L, Cannamela C (2015) Cokriging-Based sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes. Technometrics 57(3):418–427. doi:10.1080/00401706.2014.928233

    Article  MathSciNet  Google Scholar 

  • Mackman TJ, Allen CB, Ghoreyshi M, Badcock KJ (2013) Comparison of adaptive sampling methods for generation of surrogate aerodynamic models. AIAA J 51(4):797–808. doi:10.2514/1.J051607

    Article  Google Scholar 

  • Micchelli CA (1986) Interpolation of scattered data: distance matrices and conditionally positive definite functions. Construct Approx 2(1):11–22. doi:10.1007/BF01893414

    Article  MathSciNet  MATH  Google Scholar 

  • Miklós A, Hess P, Bozóki Z (2001) Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev Sci Instrum 72(4):1937–1955. doi:10.1063/1.1353198

    Article  Google Scholar 

  • Morris MD, Mitchell TJ, Ylvisaker D (1993) Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35(3):243–255

    Article  MathSciNet  MATH  Google Scholar 

  • Powell MJD (1987) Radial basis functions for multivariable interpolation: a review. In: Mason J C, Cox M G (eds) Algorithms for approximation. Clarendon Press, New York, pp 143–167

    Google Scholar 

  • Powell MJD (2001) Radial basis function methods for interpolation to functions of many variables. In: HERCMA, pp 2–24

  • Regis RG, Shoemaker CA (2006) Improved strategies for radial basis function methods for global optimization. J Glob Optim 37(1):113–135. doi:10.1007/s10898-006-9040-1

    Article  MathSciNet  MATH  Google Scholar 

  • Rippa S (1999) An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv Comput Math 11(2–3):193–210

    Article  MathSciNet  MATH  Google Scholar 

  • Rouxel J, Coutard JG, Gidon S, Lartigue O, Nicoletti S, Parvitte B, Vallon R, Zéninari V, Glière A (2016) Miniaturized differential Helmholtz resonators for photoacoustic trace gas detection. Sens Actuat B: Chem 10.1016/j.snb.2016.06.074

  • Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments. Springer-Verlag, Berlin-Heidelberg

    Book  MATH  Google Scholar 

  • Schonlau M, Welch WJ (1996) Global optimization with nonparametric function fitting. In: Proceedings of the ASA, section on physical and engineering sciences, pp 183–186

  • Sun G, Li G, Stone M, Li Q (2010) A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials. Comput Mater Sci 49(3):500–511. doi:10.1016/j.commatsci.2010.05.041

    Article  Google Scholar 

  • Vitali R, Haftka R, Sankar B (2002) Multi-fidelity design of stiffened composite panel with a crack. Struct Multidiscip Optim 23(5):347–356. doi:10.1007/s00158-002-0195-1

    Article  Google Scholar 

  • Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129(4):370–380

    Article  Google Scholar 

  • Xiong S, Qian PZG, Wu CFJ (2013) Sequential design and analysis of high-accuracy and low-accuracy computer codes. Technometrics 55(1):37–46. doi:10.1080/00401706.2012.723572

    Article  MathSciNet  Google Scholar 

  • Zéninari V, Kapitanov VA, Courtois D, Ponomarev YN (1999) Design and characteristics of a differential helmholtz resonant photoacoustic cell for infrared gas detection. Infrared Phys Technol 40(1):1–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Durantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durantin, C., Rouxel, J., Désidéri, JA. et al. Multifidelity surrogate modeling based on radial basis functions. Struct Multidisc Optim 56, 1061–1075 (2017). https://doi.org/10.1007/s00158-017-1703-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1703-7

Keywords

Navigation