Skip to main content
Log in

Sensitivity of structural response in context of linear and non-linear buckling analysis with solid shell finite elements

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The paper is concerned with the sensitivity analysis of structural responses in context of linear and non-linear stability phenomena like buckling and snapping. The structural analysis covering these stability phenomena is summarised. Design sensitivity information for a solid shell finite element is derived. The mixed formulation is based on the Hu-Washizu variational functional. Geometrical non-linearities are taken into account with linear elastic material behaviour. Sensitivities are derived analytically for responses of linear and non-linear buckling analysis with discrete finite element matrices. Numerical examples demonstrate the shape optimisation maximising the smallest eigenvalue of the linear buckling analysis and the directly computed critical load scales at bifurcation and limit points of non-linear buckling analysis, respectively. Analytically derived gradients are verified using the finite difference approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achtziger W, Kočvara M (2008) Structural Topology Optimization with Eigenvalues. SIAM J Optim 18 (4):1129–1164

    Article  MathSciNet  MATH  Google Scholar 

  • Arora J (1993) An exposition of the material derivative approach for structural shape sensitivity analysis. Comput Methods Appl Mech Eng 105(1):41–62

    Article  MathSciNet  MATH  Google Scholar 

  • Baier H, Seeßelberg C, Specht B (1996) Optimierung in der Strukturmechanik. Vieweg+Teubner, Braunschweig

    Google Scholar 

  • Barthold FJ (2002) Zur Kontinuumsmechanik inverser Geometrieprobleme. Habilitation, TU Braunschweig

  • Barthold FJ, Gerzen N, Kijanski W, Materna D (2016) Efficient variational design sensitivity analysis, springer international publishing, Cham, 229–257

  • Bathe KJ, Dvorkin EN (1983) On the automatic solution of nonlinear finite element equations. Comput Struct 17(5):871–879

    Article  Google Scholar 

  • Bathe KJ (1996) Finite element procedures. Prentice-Hall, Inc.

  • Bischoff M, Bletzinger KU, Wall WA, Ramm E (2004) Models and Finite Elements for Thin-Walled Structures, John Wiley & Sons, Ltd

  • Chan TF (1984) Deflation techniques and block-elimination algorithms for solving bordered singular systems. SIAM J Sci Stat Comput 5(1):121–134

    Article  MathSciNet  MATH  Google Scholar 

  • Choi JH (2007) Shape design sensitivity analysis for stability of elastic continuum structures. Int J Solids Struct 44(5):1593–1607

    Article  MATH  Google Scholar 

  • Choi KK, Haug EJ, Lam HL (1982) A numerical method for distributed parameter structural optimization problems with repeated eigenvalues. J Struct Mech 10(2):191–207

    Article  MathSciNet  Google Scholar 

  • Choi KK, Kim NH (2005a) Structural sensitivity analysis and optimization 1–Linear systems mechanical engineering series. Springer, Berlin

  • Choi KK, Kim NH (2005b) Structural Sensitivity Analysis and Optimization 2–Nonlinear systems and applications Mechanical Engineering Series. Springer, Berlin

  • Crisfield M (1981) A fast incremental/iterative solution procedure that handles ”snap-through”. Comput Struct 13(1–3):55–62

    Article  MATH  Google Scholar 

  • de Boer H, van Keulen F (2000) Refined semi-analytical design sensitivities. Int J Solids Struct 37:6961–6980

  • Deml M, Wunderlich W (1997) Direct evaluation of the ’worst’ imperfection shape in shell buckling. Comput Methods Appl Mech Eng 149:201–222. containing papers presented at the Symposium on Advances in Computational Mechanics

    Article  MATH  Google Scholar 

  • El Damatty A, Nassef A (2001) A finite element optimization technique to determine critical imperfections of shell structures. Struct Multidiscipl Optim 23(1):75–87

    Article  Google Scholar 

  • Elishakoff I, Ohsaki M (2010) Optimization and anti-optimization of structures under uncertainty. World Scientific

  • Farin G (2002) Curves and surfaces for CAGD, Fifth Edition. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Fujii F, Ramm E (1997) Computational bifurcation theory: path-tracing, pinpointing and path-switching. Eng Struct 19(5):385–392

    Article  Google Scholar 

  • Fujii F, Ikeda K, Noguchi H, Okazawa S (2001) Modified stiffness iteration to pinpoint multiple bifurcation points. Comput Methods Appl Mech Eng 190(18–19):2499–2522

    Article  MATH  Google Scholar 

  • Gao X, Ma H (2015) Topology optimization of continuum structures under buckling constraints. Comput Struct 157:142–152

    Article  Google Scholar 

  • Gerzen N (2014) Analysis and applications of variational sensitivity information in structural optimisation. Dissertation, TU Dortmund

  • Gerzen N, Barthold F (2013) Variational design sensitivity analysis of a non-linear solid shell with applications to buckling analysis. In: Proceedings of the 10th World Congress on Structural and Multidisciplinary Optimization WCSMO10

  • Gerzen N, Barthold F, Klinkel S, Wagner W, Materna D (2013) Variational sensitivity analysis of a nonlinear solid shell element. Int J Numer Methods Eng 96(1):29–42

    Article  MathSciNet  MATH  Google Scholar 

  • Gu YX, Zhao GZ, Zhang HW, Kang Z, Grandhi RV (2000) Buckling design optimization of complex built-up structures with shape and size variables. Struct Multidiscip Optim 19(3):183–191

    Article  Google Scholar 

  • Haber RB (1987) Computer aided optimal design Springer, chap A new variational approach to structural shape design sensitivity analysis, 573–587

  • Hu HT (1994) Buckling optimization of fiber-composite laminate shells considering in-plane shear nonlinearity. Struct Optim 8(2):168–173

    Article  Google Scholar 

  • Haftka R (1993) Semi-analytical static nonlinear structural sensitivity analysis. AIAA J 31(7):1307–1321

    Article  MathSciNet  MATH  Google Scholar 

  • Haug EJ, Rousselet B (1980) Design Sensitivity Analysis in Structural mechanics.II. Eigenvalue Variations. J Struct Mech 8(2):161–186

    Article  MathSciNet  Google Scholar 

  • Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic Press, Orlando

    MATH  Google Scholar 

  • Hellweg HB, Crisfield M (1998) A new arc-length method for handling sharp snap-backs. Comput Struct 66(5):704–709

    Article  MATH  Google Scholar 

  • Kegl M, Brank B, Harl B, Oblak MM (2008) Efficient handling of stability problems in shell optimization by asymmetric ’worst-case’ shape imperfection. Int J Numer Methods Eng 73(9):1197–1216

    Article  MATH  Google Scholar 

  • Kemmler R (2004) Stabilität und große Verschiebungen in der Topologie- und Formoptimierung. Dissertation, Universität Stuttgart

  • Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidiscipl Optim 30(6):459–476

    Article  MathSciNet  MATH  Google Scholar 

  • van Keulen F, Haftka RT, Kim NH (2005) Review of options for structural design sensitivity analysis. part 1: Linear systems. Comput Methods Appl Mech Eng 194:3213–3243

  • Khot NS, Venkayya VB, Berke L (1976) Optimum structural design with stability constraints. Int J Numer Methods Eng 10(5):1097–1114

    Article  MATH  Google Scholar 

  • Khot NS (1983) Nonlinear analysis of optimized structure with constraints on system stability. AIAA J 21 (8):1181–1186

    Article  MATH  Google Scholar 

  • Khot NS, Kamat MP (1985) Minimum weight design of truss structures with geometric nonlinear behavior. AIAA J 23(1):139–144

    Article  MATH  Google Scholar 

  • Kirikov M, Altus E (2011) Functional gradient as a tool for semi-analytical optimization for structural buckling. Comput Struct 89(17–18):1563–1573

    Article  Google Scholar 

  • Klinkel S, Wagner W (2008) A piezoelectric solid shell element based on a mixed variational formulation for geometrically linear and nonlinear applications. Comput Struct 86:38–46

    Article  Google Scholar 

  • Klinkel S, Gruttmann F, Wagner W (2006) A robust non-linear solid shell element based on a mixed variational formulation. Comput Methods Appl Mech Eng 195:179–201

    Article  MATH  Google Scholar 

  • Krenk S (1995) An orthogonal residual procedure for non-linear finite element equations. Int J Numer Methods Eng 38(5):823–839

    Article  MathSciNet  MATH  Google Scholar 

  • Kristanič N, Korelc J (2008) Optimization method for the determination of the most unfavorable imperfection of structures. Comput Mech 42(6):859–872

    Article  MATH  Google Scholar 

  • Kwon TS, Lee BC, Lee WJ (1999) An approximation technique for design sensitivity analysis of the critical load in non-linear structures. Int J Numer Methods Eng 45(12):1727– 1736

    Article  MATH  Google Scholar 

  • Leon SE, Paulino GH, Pereira A, Menezes IFM, Lages EN (2014) A Unified Library of Nonlinear Solution Schemes. Appl Mech Rev 64(4):040803–1–26

    Article  Google Scholar 

  • Leon SE, Lages EN, de Araújo CN, Paulino GH (2014) On the effect of constraint parameters on the generalized displacement control method. Mech Res Commun 56:123–129

  • Lindgaard E, Lund E, Rasmussen K (2010) Nonlinear buckling optidmization of composite structures considering ”worst” shape imperfections. Int J Solids Struct 47(22–23):3186–3202

    Article  MATH  Google Scholar 

  • Lindgaard E, Lund E (2010) Nonlinear buckling optimization of composite structures. Comput Methods Appl Mech Eng 199(37–40):2319–2330

    Article  MathSciNet  MATH  Google Scholar 

  • Lund E, Olhoff N (1994) Shape design sensitivity analysis of eigenvalues using exact numerical differentiation of finite element matrices. Struct Optim 8(1):52–59

    Article  Google Scholar 

  • Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91(2):158– 167

    Article  Google Scholar 

  • Mateus H, Soares C, Soares C (1997) Buckling sensitivity analysis and optimal design of thin laminated structures. Comput Struct 64(1–4):461–472. computational Structures Technology

    Article  MATH  Google Scholar 

  • Mróz Z, Piekarski J (1998) Sensitivity analysis and optimal design of non-linear structures. Int J Numer Methods Eng 42(7):1231– 1262

    Article  MathSciNet  MATH  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New York

    MATH  Google Scholar 

  • Noguchi H, Hisada T (1993) Sensitivity analysis in post-buckling problems of shell structures. Comput Struct 47(4–5):699–710

    Article  MATH  Google Scholar 

  • Ohsaki M (2002) Maximum loads of imperfect systems corresponding to stable bifurcation. Int J Solids Struct 39(4):927–941

    Article  MATH  Google Scholar 

  • Ohsaki M (2005) Design sensitivity analysis and optimization for nonlinear buckling of finite-dimensional elastic conservative structures. Comput Methods Appl Mech Eng 194(30–33):3331– 3358

    Article  MATH  Google Scholar 

  • Ohsaki M, Uetani K (1996) Sensitivity analysis of bifurcation load of finite dimensional symmetric systems. Int J Numer Methods Eng 39(10):1707–1720

    Article  MathSciNet  MATH  Google Scholar 

  • Ohsaki M, Uetani K, Takeuchi M (1998) Optimization of imperfection-sensitive symmetric systems for specified maximum load factor. Comput Methods Appl Mech Eng 166(3–4):349– 362

    Article  MATH  Google Scholar 

  • Parente E, Vaz LE (2003) On evaluation of shape sensitivities of non-linear critical loads. Int J Numer Methods Eng 56(6):809–846

    Article  MATH  Google Scholar 

  • Park JS, Choi KK (1990) Design sensitivity analysis of critical load factor for nonlinear structural systems. Comput Struc 36(5):823–838

    Article  MATH  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20 (1):2–11

    Article  Google Scholar 

  • Powell G, Simons J (1981) Improved iteration strategy for nonlinear structures. Int J Numer Methods Eng 17(10):1455–1467

    Article  MATH  Google Scholar 

  • Ramm E (1981) Strategies for tracing nonlinear response near limit points. In: Wunderlich W, Stein E, Bathe K J (eds) Nonlinear Finite Element Analysis in Structural Mechanics, Springer and Berlin and Heidelberg, pp 63–89

  • Reitinger R (1994) Stabilität und optimierung imperfektionsempfindlicher tragwerke. Dissertation, Universität Stuttgart

  • Reitinger R, Bletzinger KU, Ramm E (1994) Shape optimization of buckling sensitive structures. Comput Syst Eng 5(1):65–75

    Article  MATH  Google Scholar 

  • Reitinger R, Bletzinger KU, Ramm E (1994) Buckling and imperfection sensitivity in the optimization of shell structures. Thin-Walled Struct 23(1):159–177

    Google Scholar 

  • Riks E (1972) The application of newton’s method to the problem of elastic stability. J Appl Mech 39 (4):1060–1065

    Article  MATH  Google Scholar 

  • Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529–551

    Article  MathSciNet  MATH  Google Scholar 

  • Ritto-Corrêa M, Camotim D (2008) On the arc-length and other quadratic control methods: established, less known and new implementation procedures. Comput Struct 86(11–12):1353–1368

    Article  Google Scholar 

  • Schweizerhof K, Wriggers P (1986) Consistent linearization for path following methods in nonlinear fe analysis. Comput Methods Appl Mech Eng 59(3):261–279

    Article  MATH  Google Scholar 

  • Seyranian A, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

    Article  Google Scholar 

  • Thompson J (1972) Optimization as a generator of structural instability. Int J Mech Sci 14:627–629

    Article  Google Scholar 

  • Tortorelli DA, Michaleris P (1994) Design sensitivity analysis: Overview and review. Inverse Prob Eng 1 (1):71–105

    Article  Google Scholar 

  • Tortorelli DA, Zixian W (1993) A systematic approach to shape sensitivity analysis. Int J Solids Struct 30 (9):1181–1212

    Article  MathSciNet  MATH  Google Scholar 

  • Wagner W (1991) Zur behandlung von stabilitätsproblemen der elastostatik mit der methode der finiten elemente. Habilitation, Universität Hannover

  • Wempner GA (1971) Discrete approximations related to nonlinear theories of solids. Int J Solids Struct 7 (11):1581–1599

    Article  MATH  Google Scholar 

  • Wriggers P (2008) Nonlinear finite element methods springer. Berlin, Heidelberg

    MATH  Google Scholar 

  • Wriggers P, Simo J (1990) A general procedure for the direct computation of turning and bifurcation points. Int J Numer Methods Eng 30(1):155–176

    Article  MATH  Google Scholar 

  • Wriggers P, Wagner W, Miehe C (1988) A quadratically convergent procedure for the calculation of stability points in finite element analysis. Comput Methods Appl Mech Eng 70(3):329– 347

    Article  MATH  Google Scholar 

  • Wu C, Arora J (1988) Design sensitivity analysis of non-linear buckling load. Comput Mech 3(2):129–140

    Article  MATH  Google Scholar 

  • Yang YB, Shieh MS (1990) Solution method for nonlinear problems with multiple critical points. AIAA J 28(12):2110–2116

    Article  Google Scholar 

  • Özakça M, Tayşi N, Kolcu F (2003) Buckling analysis and shape optimization of elastic variable thickness circular and annular plates—ii. shape optimization. Eng Struct 25(2):193–199

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the German Research Foundation (DFG) under grant no. BA 1828/5-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Radau.

Appendices

Appendix: A: Structural analysis for solid shells

A brief summary of the element formulation presented by Klinkel et al. (2006) and Klinkel and Wagner (2008) for structural analysis is given. Additional sensitivity quantities by means of the pseudo load and sensitivity matrices presented by Gerzen et al. (2013) and (Gerzen 2014) are summarised as well. The shell continuum Ω R is divided in element domains Ω R e , which can be expressed with the assembly over all elements \({\Omega }_{R}=\overset {\text {nel}}{\underset {{e=1}}{{{ A}}}}{\Omega }_{Re}\). A low order hexahedral solid shell element is build. Isoparametric trilinear approximations of geometry and displacement field result in an eight node solid shell element with three displacement degrees of freedom per node. The superscript h indicates the field variables after discretisation. The subscript e indicates quantities on element level.

1.1 A.1 Approximation of kinematic quantities

Geometry, displacements and its variations are interpolated in the same manner

$$ \boldsymbol{X}^{h}=\boldsymbol{N} \hat{X}_{e},\quad\boldsymbol{u}^{h}=\boldsymbol{N} \hat{u}_{e}\quad\text{and}\quad\delta\boldsymbol{u}^{h}=\boldsymbol{N}\delta \hat{u}_{e}. $$
(96)

The discrete nodal coordinates, displacements and variations are arranged in the vectors \( \hat {\boldsymbol {X}}_{e}\in \mathbb {R}^{24\times 1}\), \( \hat {\boldsymbol {u}}_{e}\in \mathbb {R}^{24\times 1}\) and \(\delta \hat {\boldsymbol {u}}_{e}\in \mathbb {R}^{24\times 1}\), respectively. The shape functions for the nodes I=1,2,...,8

$$ N_{I}=\frac{1}{8}(1+{\xi^{1}_{I}}\xi^{1})(1+{\xi^{2}_{I}}\xi^{2})(1+{\xi^{3}_{I}}\xi^{3}), $$
(97)

with −1≤ξ i≤+1 are organised in the interpolation matrix N=[N 1,...,N 8] with the submatrix N I =diag[N I ,N I ,N I ]. The Cartesian coefficients of the Green-Lagrangian strain tensor E are ordered in the vector E=[E 11,E 22,E 33,2E 12,2E 13,2E 23]T in Voigt notation. The covariant basis vectors in discrete form are

$$ \boldsymbol{G}_{i}^{h}=\boldsymbol{N}_{,i} \hat{X}_{e},\qquad \boldsymbol{g}_{i}^{h}=\boldsymbol{N}_{,i}(\hat{X}_{e}+ \hat{u}_{e}), $$
(98)

with N ,i containing the derivatives of the shape functions with respect to the convective coordinates ξ i. The necessary derivatives of the shape functions with respect to the global coordinates

$$ \frac{\partial N_{I}}{\partial \boldsymbol{X}}=[\boldsymbol{G}_{1}^{h}\, \boldsymbol{G}_{2}^{h}\, \boldsymbol{G}_{3}^{h}]^{-T}\frac{\partial N_{I}}{\partial \boldsymbol \xi} $$
(99)

can be computed.

1.2 A.2 Approximation of strains and their variations.

The local convective strain components are approximated with

$$\begin{array}{@{}rcl@{}} &&\boldsymbol{E}^{h}_{L}=\\ &&\left[\begin{array}{c} \frac{1}{2}(g_{11}^{h}-G_{11}^{h})\\ \frac{1}{2}(g_{22}^{h}-G_{22}^{h})\\ \sum\limits_{L=i}^{iv}\frac{1}{4}(1+{\xi^{1}_{L}}\xi^{1})(1+{\xi^{2}_{L}}\xi^{2})\frac{1}{2}(g_{33}^{L}-G_{33}^{L})\\ (g_{12}^{h}-G_{12}^{h})\\ \frac{1}{2}((1-\xi^{2})(g_{13}^{B}-G_{13}^{B})+(1+\xi^{2})(g_{13}^{D}-G_{13}^{D}))\\ \frac{1}{2}((1-\xi^{1})(g_{23}^{A}-G_{23}^{A})+(1+\xi^{1})(g_{23}^{C}-G_{23}^{C})) \end{array}\right].\\ \end{array} $$
(100)

The corresponding strains are computed via ANS interpolation. A transformation to Cartesian coordinates

$$ \boldsymbol{E}^{h}=\boldsymbol{T}_{S}^{-T}\boldsymbol{E}^{h}_{L} $$
(101)

can be done using the transformation matrix \(\boldsymbol {T}_{S}^{-T}\). It is defined via \(\boldsymbol {T}_{S}=\boldsymbol {T}(\bar {a},\bar {b})\) with \(\bar {a}=2\), \(\bar {b}=1\) and

$$\begin{array}{@{}rcl@{}} &&\boldsymbol{T}=\left[\begin{array}{llll} (J_{11})^{2}&(J_{12})^{2}&(J_{13})^{2} &{\dots} \\ (J_{21})^{2}&(J_{22})^{2}&(J_{23})^{2} &{\dots} \\ (J_{31})^{2}&(J_{32})^{2}&(J_{33})^{2} &{\dots} \\ bJ_{11}J_{21}&bJ_{12}J_{22}&bJ_{13}J_{23}&\dots\\ bJ_{11}J_{31}&bJ_{12}J_{32}&bJ_{13}J_{33}&\dots\\ bJ_{21}J_{31}&bJ_{22}J_{32}&bJ_{23}J_{33}&\dots \end{array}\right.\\&& \left. \begin{array}{cccc} \dots&aJ_{11}J_{12}&aJ_{11}J_{13}&aJ_{12}J_{13} \\ \dots&aJ_{21}J_{22}&aJ_{21}J_{23}&aJ_{22}J_{23} \\ \dots&aJ_{31}J_{32}&aJ_{31}J_{33}&aJ_{32}J_{33} \\ \dots&J_{11}J_{22}+J_{12}J_{21}&J_{11}J_{23}+J_{13}J_{21}&J_{12}J_{23}+J_{13}J_{22}\\ \dots&J_{11}J_{32}+J_{12}J_{31}&J_{11}J_{33}+J_{13}J_{31}&J_{12}J_{33}+J_{13}J_{32}\\ \dots&J_{21}J_{32}+J_{22}J_{31}&J_{21}J_{33}+J_{23}J_{31}&J_{22}J_{33}+J_{23}J_{32} \end{array}\right].\\ \end{array} $$
(102)

and \(J_{ik}=\boldsymbol {e}_{i}\cdot \boldsymbol {G}_{k}^{h}\). The vectors \(\boldsymbol {G}_{k}^{h}\) are the well known convective tangent vectors and e i are the orthogonal unit base vectors of Cartesian space. On element level the approximation of the virtual and incremental Green-Lagrangian strains reads

$$ \delta\boldsymbol{E}^{h}=\boldsymbol{B}\delta \hat{u}_{e},\qquad \Delta\boldsymbol{E}^{h}=\boldsymbol{B}\Delta \hat{u}_{e}, $$
(103)

respectively. For the approximation the interpolation matrix reads

$$ \boldsymbol{B}=\boldsymbol{T}_{S}^{-T}\boldsymbol{B}_{L}\qquad\text{with}\quad \boldsymbol{B}_{L}=[\boldsymbol{B}_{L1},...,\boldsymbol{B}_{L8}]. $$
(104)

The submatrix B L I at I-th node is given by

$$ \boldsymbol{B}_{LI}=[\boldsymbol{B}_{LI}^{1},\boldsymbol{B}_{LI}^{2},\boldsymbol{B}_{LI}^{3},\boldsymbol{B}_{LI}^{4},\boldsymbol{B}_{LI}^{5},\boldsymbol{B}_{LI}^{6}]^{T} $$
(105)

with

$$\begin{array}{@{}rcl@{}} \boldsymbol{B}_{LI}^{1}&=&N_{I,1}(\boldsymbol{g}_{1}^{h})^{T},\\ \boldsymbol{B}_{LI}^{2}&=&N_{I,2}(\boldsymbol{g}_{2}^{h})^{T},\\ \boldsymbol{B}_{LI}^{3}&=&\sum\limits_{L=i}^{iv}\frac{1}{4}(1+{\xi^{1}_{L}}\xi^{1})(1+{\xi^{2}_{L}}\xi^{2})N_{I,3}^{L}(\boldsymbol{g}_{3}^{L})^{T},\\ \boldsymbol{B}_{LI}^{4}&=&N_{I,1}(\boldsymbol{g}_{2}^{h})^{T}+N_{I,2}(\boldsymbol{g}_{1}^{h})^{T},\\ \boldsymbol{B}_{LI}^{5}&=&\frac{1}{2}((1-\xi^{2})(N_{I,1}^{B}(\boldsymbol{g}_{3}^{B})^{T}+N_{I,3}^{B}(\boldsymbol{g}_{1}^{B})^{T})) \\&&+\frac{1}{2}((1+\xi^{2})(N_{I,1}^{D}(\boldsymbol{g}_{3}^{D})^{T}+N_{I,3}^{D}(\boldsymbol{g}_{1}^{D})^{T})),\\ \boldsymbol{B}_{LI}^{6}&=&\frac{1}{2}((1-\xi^{1})(N_{I,2}^{A}(\boldsymbol{g}_{3}^{A})^{T}+N_{I,3}^{A}(\boldsymbol{g}_{2}^{A})^{T})) \\&& +\frac{1}{2}((1+\xi^{1})(N_{I,2}^{C}(\boldsymbol{g}_{3}^{C})^{T}+N_{I,3}^{C}(\boldsymbol{g}_{2}^{C})^{T})). \end{array} $$
(106)

The superscripts A,B,C,D denote collocation points of assumed natural strain (ANS) interpolation for the treatment of transverse shear locking A=(−1,0,0), B=(0,−1,0), C=(1,0,0) and D=(0,1,0) in convective coordinates ξ i. To overcome curvature thickness locking the collocation points i=(−1,−1,0), i i=(1,−1,0), i i i=(1,1,0) and i v=(−1,1,0) in convective coordinates ξ i are chosen. They are denoted with superscript L = i,i i,i i i,i v. Details on how to choose these collocation points can be found in Klinkel et al. (2006) and references therein. Due to the ANS interpolations from now on the element formulation is not isotropic any more and ξ 3 denotes the thickness direction. The quantity \(\Delta \delta \boldsymbol {E}:{\hat {\boldsymbol {S}}}\) from the linearisation of the weak form (120) is approximated in the following way The first quantity K e is obtained by the discretisation of

$$ (\Delta\delta{\boldsymbol{E}}:{\hat{\boldsymbol{S}}})^{h}=\delta \hat{u}_{e}^{T}\boldsymbol{G}\Delta \hat{u}_{e},~ \boldsymbol{G}=\left[\begin{array}{ccc} \boldsymbol{G}_{11}&\cdots&\boldsymbol{G}_{18}\\ \vdots&\ddots&\vdots\\ \boldsymbol{G}_{81}&\cdots&\boldsymbol{G}_{88} \end{array}\right] $$
(107)

given by the submatrices G I J =diag[G I J ,G I J ,G I J ] for the node combination I, J defined by the scalar

$$ G_{IJ}=\left( \hat{S}^{h}\right)^{T}\boldsymbol{B}_{IJ}. $$
(108)

The required matrix B I J is known from (35).

1.3 A.3 Approximation of assumed strain fields

The strain tensor \({\bar {\boldsymbol {E}}}\) is additively decomposed

$$ {\bar{\boldsymbol{E}}}=\hat{\boldsymbol{E}}+\tilde{\boldsymbol{E}}=\hat{E}^{ij}\boldsymbol{G}_{i}\otimes\boldsymbol{G}_{j}+\tilde{E}_{ij}\boldsymbol{G}^{i}\otimes\boldsymbol{G}^{j}. $$
(109)

The components of the strain fields \(\hat {\boldsymbol {E}}\) and \(\tilde {\boldsymbol {E}}\) are interpolated in local convective co-ordinates and transformed to Cartesian coordinates using Voigt Notation. The transformation of the contravariant components \(\hat {E}^{ij}\) is done by the transformation matrix \(\boldsymbol {T}_{E}=\boldsymbol {T}(\bar {a},\bar {b})\) with \(\bar {a}=1\), \(\bar {b}=2\), cf. (102). The approximation of the strain field in vector notation is

$$ \hat{E}^{h}=\boldsymbol{N}_{E}\boldsymbol \alpha_{e}^{1},\quad \boldsymbol \alpha_{e}^{1}\in\mathbb{R}^{18},\quad \boldsymbol{N}_{E}=\boldsymbol{T}_{E}^{0}\boldsymbol{N}_{L} $$
(110)

with

$$ \boldsymbol{N}_{L}=[\boldsymbol{I}\quad \hat{\boldsymbol{N}}\quad \hat{\hat{\boldsymbol{N}}}]. $$
(111)

Quantities evaluated at the centre of the element are denoted with the superscript 0. \(\boldsymbol {I}\in \mathbb {R}^{6\times 6}\) is the identity matrix. The interpolation matrices in natural coordinates are

$$ \hat{\boldsymbol{N}}=\left[\begin{array}{lllll} \xi^{3}&\xi^{2}\xi^{3}&0&0&0\\ 0&0&\xi^{3}&\xi^{1}\xi^{3}&0\\ 0&0&0&0&0\\ 0&0&0&0&\xi^{3}\\ 0&0&0&0&0\\ 0&0&0&0&0 \end{array}\right] $$
(112)

and

$$ {\hat{\hat{\boldsymbol{N}}}}=\left[\begin{array}{lllllll} \xi^{2}&0&0&0&0&0&0\\ 0&\xi^{1}&0&0&0&0&0\\ 0&0&\xi^{1}&\xi^{2}&\xi^{1}\xi^{2}&0&0\\ 0&0&0&0&0&0&0\\ 0&0&0&0&0&\xi^{2}&0\\ 0&0&0&0&0&0&\xi^{1} \end{array}\right]. $$
(113)

Klinkel et al. (2006) call \(\tilde {\boldsymbol {E}}\) the enhanced assumed strain field. Its covariant components are interpolated and transformed to Cartesian space using the relations

$$ \tilde{E}^{h}=\boldsymbol{M}_{E}\,\boldsymbol \alpha_{e}^{2},~ \boldsymbol \alpha_{e}^{2}\in\mathbb{R}^{7}~\text{with}~\boldsymbol{M}_{E}=\boldsymbol{T}_{M}\boldsymbol{M} $$
(114)

and

$$ \boldsymbol{T}_{M}=\frac{\det\boldsymbol{J}^{0}}{\det\boldsymbol{J}}(\boldsymbol{T}_{S}^{0})^{-T}. $$
(115)

\(\boldsymbol {J}=[\boldsymbol {G}_{1}^{h},\boldsymbol {G}_{2}^{h},\boldsymbol {G}_{3}^{h}]^{T}\) is the Jacobian matrix. The interpolation matrix for the enhanced assumed strain field in natural coorinates reads

$$ \boldsymbol{M}=\left[\begin{array}{ccccccc} \xi^{1}&\xi^{1}\xi^{2}&0&0&0&0&0\\ 0&0&\xi^{2}&\xi^{1}\xi^{2}&0&0&0\\ 0&0&0&0&\xi^{3}&\xi^{1}\xi^{3}&\xi^{2}\xi^{3}\\ 0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0 \end{array}\right]. $$
(116)

The interpolation of the total strain can now be expressed as

$$ \bar{E}^{h}=\boldsymbol{N}_{E}\boldsymbol \alpha_{e}^{1}+\boldsymbol{M}_{E}\boldsymbol \alpha_{e}^{2}. $$
(117)

Derivatives of strain energy function yield the 2nd Piola-Kirchhoff stresses and the material matrix

$$ \bar{S}^{h}=\frac{\partial W_{Re}}{\partial \bar{E}^{h}},\quad \bar{C}^{h}=\frac{\partial^{2} W_{Re}}{\partial \bar{E}^{h}\partial \bar{E}^{h}}, $$
(118)

respectively.

1.4 A.4 Approximation of assumed stress fiels

The interpolation of the stress field \( \hat {S}^{h}\) reads

$$ \hat{S}^{h}=\boldsymbol{N}_{S}\boldsymbol \beta_{e},\quad \boldsymbol \beta_{e}\in\mathbb{R}^{18}\quad\text{with}\quad \boldsymbol{N}_{S}=\boldsymbol{T}_{S}^{0}\boldsymbol{N}_{L}. $$
(119)

The same procedure is used for the virtual stresses \(\delta \hat {S}^{h}\) and the incremental stresses \(\delta \hat {S}^{h}\). The transformation to global co-ordinates is done by the transformation matrix \(\boldsymbol {T}_{S}^{0}=\boldsymbol {T}(\bar {a},\bar {b})\) with \(\bar {a}=2\), \(\bar {b}=1\). The superscript 0 denotes quantities evaluated at the element centre. The transformation matrix T is given by (102).

1.5 A.5 Element matrices and vectors

Element matrices are

$$\begin{array}{@{}rcl@{}} \boldsymbol{K}_{e}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{G}\,d{\Omega}_{e},\\ \boldsymbol{L}_{e}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{N}_{S}^{T}\boldsymbol{B}\,d{\Omega}_{e},\\ \boldsymbol{C}_{e}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{N}_{S}^{T}\boldsymbol{N}_{E}\,d{\Omega}_{e},\\ \boldsymbol{A}_{e}^{11}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{N}_{E}^{T} \bar{C}^{h}\boldsymbol{N}_{E}\,d{\Omega}_{e},\\ \boldsymbol{A}_{e}^{12}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{N}_{E}^{T} \bar{C}^{h}\boldsymbol{M}_{E}\,d{\Omega}_{e},\\ \boldsymbol{A}_{e}^{21}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{M}_{E}^{T} \bar{C}^{h}\boldsymbol{N}_{E}\,d{\Omega}_{e},\\ \boldsymbol{A}_{e}^{22}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{M}_{E}^{T} \bar{C}^{h}\boldsymbol{M}_{E}\,d{\Omega}_{e} \end{array} $$
(120)

and element vectors are

$$\begin{array}{@{}rcl@{}} \boldsymbol{f}_{e}^{\text{int}}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{B}^{T} \hat{\boldsymbol{S}}^{h}\,d{\Omega}_{e},\\ \boldsymbol{f}_{e}^{\text{ext}}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{N}^{T},d{\Omega}_{e}+\int\limits_{{{\Gamma}_{N}^{e}}}\boldsymbol{N}^{T}\boldsymbol{t}\,d{\Gamma}_{e},\\ \boldsymbol{a}_{e}^{1}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{N}_{E}^{T}\left( \bar{\boldsymbol{S}}^{h}- \hat{\boldsymbol{S}}^{h}\right)\,d{\Omega}_{e},\\ \boldsymbol{a}_{e}^{2}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{M}_{E}^{T} \bar{\boldsymbol{S}}^{h}\,d{\Omega}_{e},\\ \boldsymbol{b}_{e}&=&\int\limits_{{\Omega}_{Re}}\boldsymbol{N}_{S}^{T}\left( \boldsymbol{E}^{h}- \hat{\boldsymbol{E}}^{h}\right)\,d{\Omega}_{e}. \end{array} $$
(121)

Appendix: B: Sensitivity analysis for solid shells

Quantities for design sensitivity analysis by means of the pseudo load and sensitivity matrices derived by Gerzen et al. (2013) are summarised briefly.

1.1 B.1 Variational relations

For the computation of total derivatives of objectives and constraints after (43) pseudo load and sensitivity operator are desired. The pseudo load operator is obtained as variation of the physical residual with respect to the design

$$ p=\delta_{\text{{X}}}R_u+\delta_{\text{{X}}}R_{{{\hat{S}}}}+\delta_{\text{{X}}}R_{{{\bar{E}}}}= p_u+p_{{{\hat{S}}}}+p_{{{\bar{E}}}} $$
(122)

with the partial derivatives

$$\begin{array}{@{}rcl@{}} p_u(\boldsymbol{v},\boldsymbol{X};\delta\boldsymbol{u},\delta\boldsymbol{X})&=&\int\limits_{{\Omega}_{R}}\left( \delta_u\boldsymbol{E}: \hat{\boldsymbol{S}}-\delta\boldsymbol{u}\cdot\boldsymbol{b}\right)\,\text{Div}\delta\boldsymbol{X}\,d\Omega\\ &&+\int\limits_{{\Omega}_{R}}\left( \delta_{\text{{X}}}(\delta_u\boldsymbol{E}): \hat{\boldsymbol{S}}+\delta_u\boldsymbol{E}:\delta_{\text{{X}}}{ \hat{S}}\right)\,d\Omega,\\ p_{{{\hat{S}}}}(\boldsymbol{v},\boldsymbol{X};\delta \hat{S},\delta\boldsymbol{X})&=&\int\limits_{{\Omega}_{R}}\delta \hat{S}:\left( \boldsymbol{E}-\bar{\boldsymbol{E}}\right)\,\text{Div}\delta\boldsymbol{X}\,d\Omega\\ &&+\int\limits_{{\Omega}_{R}}\delta_{\text{{X}}}\left( \delta \hat{S}:\left( \boldsymbol{E}-\bar{\boldsymbol{E}}\right)\right)\,d\Omega,\\ p_{{{\bar{E}}}}(\boldsymbol{v},\boldsymbol{X};\delta\bar{E},\delta\boldsymbol{X})&=&\int\limits_{{\Omega}_{R}}\delta\bar{\boldsymbol{E}}:\left( \frac{\partial W_{R}}{\partial \bar{\boldsymbol{E}}}- \hat{\boldsymbol{S}}\right)\,\text{Div}\delta\boldsymbol{X}\,d\Omega\\ &&+\int\limits_{{\Omega}_{R}}\delta_{\text{{X}}}\left( \delta\bar{\boldsymbol{E}}:\left( \frac{\partial W_{R}}{\partial \bar{\boldsymbol{E}}}- \hat{S}\right)\right)\,d\Omega. \end{array} $$
(123)

1.2 B.2 Discretised relations

For the discretisation of the pseudo load matrix, derivatives of transformation matrices and strains as well as the approximation of a divergence are desired. The term Divδ X is approximated with

$$ (\text{Div}\delta\boldsymbol{X})^{h}=\boldsymbol{D}\delta \hat{\boldsymbol{X}}_{e} $$
(124)

and

$$ \boldsymbol{D}=[\boldsymbol{d}_{1},...,\boldsymbol{d}_{8}],\quad \boldsymbol{d}_{I}=[N_{I,1}\quad N_{I,2} \quad N_{I,3}]. $$
(125)

The derivative of the transformation matrix T from (102) with respect to \( \hat {\boldsymbol {X}}_{e}\) is denoted with \({\mathbb {T}}\in \mathbb {R}^{6\times 6\times 24}\). Its coefficients are

$$\begin{array}{@{}rcl@{}} {\mathbb{T}}_{ijk_{1}(I)}&:=&H^{1}_{ij}(I), \quad k_{1}(I)=3I-2, \\ {\mathbb{T}}_{ijk_{2}(I)}&:=&H^{2}_{ij}(I), \quad k_{2}(I)=3I-1, \\ {\mathbb{T}}_{ijk_{3}(I)}&:=&H^{3}_{ij}(I), \quad k_{3}(I)=3I, \end{array} $$
(126)

with I=1,...,8 . Submatrices are

$$ \boldsymbol{H}^{1}(I)=\left[\boldsymbol{H}^{11}\;\boldsymbol{H}^{12}\right] $$
(127)

with

$$ \boldsymbol{H}^{11}=\left[\begin{array}{ccc} 2J_{11}N_{I,1}& 2J_{12}N_{I,2}& 2J_{13}N_{I,3}\\ 0& 0& 0\\ 0& 0& 0\\ J_{21}N_{I,1}b& J_{22}N_{I,2}b& J_{23}N_{I,3}b\\ J_{31}N_{I,1}b& J_{32}N_{I,2}b& J_{33}N_{I,3}b\\ 0& 0& 0 \end{array}\right] $$
(128)

and

$$ \boldsymbol{H}^{12}=\left[\begin{array}{lll} H^{12}_{11}& H^{12}_{12}& H^{12}_{13}\\ 0& 0& 0\\ 0& 0& 0\\ H^{42}_{41}& H^{12}_{42}& H^{12}_{43}\\ H^{52}_{51}& H^{12}_{52}& H^{12}_{53}\\ 0& 0& 0 \end{array}\right] $$
(129)

including

$$\begin{array}{@{}rcl@{}} H^{12}_{11}&=&J_{11}N_{I,2}a + J_{12}N_{I,1}a,\\ H^{12}_{12}&=&J_{11}N_{I,3}a + J_{13}N_{I,1}a,\\ H^{12}_{13}&=&J_{12}N_{I,3}a + J_{13}N_{I,2}a,\\ H^{12}_{41}&=&J_{21}N_{I,2} + J_{22}N_{I,1},\\ H^{12}_{42}&=&J_{21}N_{I,3} + J_{23}N_{I,1},\\ H^{12}_{43}&=&J_{22}N_{I,3} + J_{23}N_{I,2},\\ H^{12}_{51}&=&J_{31}N_{I,2} + J_{32}N_{I,1},\\ H^{12}_{52}&=&J_{31}N_{I,3} + J_{33}N_{I,1},\\ H^{12}_{63}&=&J_{32}N_{I,3} + J_{33}N_{I,2}, \end{array} $$
(130)
$$ \boldsymbol{H}^{2}(I)=\left[\boldsymbol{H}^{21}\;\boldsymbol{H}^{22}\right] $$
(131)

with

$$ \boldsymbol{H}^{21}=\left[\begin{array}{ccc} 0& 0& 0\\ 2J_{21}N_{I,1}& 2J_{22}N_{I,2}& 2J_{23}N_{I,3}\\ 0& 0& 0\\ J_{11}N_{I,1}b& J_{12}N_{I,2}b& J_{13}N_{I,3}b\\ 0& 0& 0\\ J_{31}N_{I,1}b& J_{32}N_{I,2}b& J_{33}N_{I,3}b \end{array}\right] $$
(132)

and

$$ \boldsymbol{H}^{22}=\left[\begin{array}{ccc} 0& 0& 0\\ H^{22}_{21}& H^{22}_{22}& H^{22}_{23}\\ 0& 0& 0\\ H^{22}_{41}& H^{22}_{42}& H^{22}_{43}\\ 0& 0& 0\\ H^{22}_{61}& H^{22}_{62}& H^{22}_{63} \end{array}\right] $$
(133)

including

$$\begin{array}{@{}rcl@{}} H^{22}_{21}&=&J_{21}N_{I,2}a + J_{22}N_{I,1}a,\\ H^{22}_{22}&=&J_{21}N_{I,3}a + J_{23}N_{I,1}a,\\ H^{22}_{23}&=&J_{22}N_{I,3}a + J_{23}N_{I,2}a,\\ H^{22}_{41}&=&J_{11}N_{I,2} + J_{12}N_{I,1},\\ H^{22}_{42}&=&J_{11}N_{I,3} + J_{13}N_{I,1},\\ H^{22}_{43}&=&J_{12}N_{I,3} + J_{13}N_{I,2},\\ H^{22}_{61}&=&J_{31}N_{I,2} + J_{32}N_{I,1},\\ H^{22}_{62}&=&J_{31}N_{I,3} + J_{33}N_{I,1},\\ H^{22}_{63}&=&J_{32}N_{I,3} + J_{33}N_{I,2}, \end{array} $$
(134)

and finally

$$ \boldsymbol{H}^{3}(I)=\left[\boldsymbol{H}^{31}\;\boldsymbol{H}^{32}\right] $$
(135)

with

$$ \boldsymbol{H}^{31}=\left[\begin{array}{ccc} 0& 0& 0\\ 0& 0& 0\\ 2J_{31}N_{I,1}& 2J_{32}N_{I,2}& 2J_{33}N_{I,3}\\ 0& 0& 0\\ J_{11}N_{I,1}b& J_{12}N_{I,2}b& J_{13}N_{I,3}b\\ J_{21}N_{I,1}b& J_{22}N_{I,2}b& J_{23}N_{I,3}b \end{array}\right] $$
(136)

and

$$ \boldsymbol{H}^{32}=\left[\begin{array}{ccc} 0& 0& 0\\ 0& 0& 0\\ H^{32}_{31}& H^{32}_{32}& H^{32}_{33}\\ 0& 0& 0\\ H^{32}_{51}& H^{32}_{52}& H^{32}_{53}\\ H^{32}_{61}& H^{32}_{62}& H^{32}_{63} \end{array}\right] $$
(137)

including

$$\begin{array}{@{}rcl@{}} H^{32}_{31}&=&J_{31}N_{I,2}a + J_{32}N_{I,1}a,\\ H^{32}_{32}&=&J_{31}N_{I,3}a + J_{33}N_{I,1}a,\\ H^{32}_{33}&=&J_{32}N_{I,3}a + J_{33}N_{I,2}a,\\ H^{32}_{51}&=&J_{11}N_{I,2} + J_{12}N_{I,1},\\ H^{32}_{52}&=&J_{11}N_{I,3} + J_{13}N_{I,1},\\ H^{32}_{53}&=&J_{12}N_{I,3} + J_{13}N_{I,2},\\ H^{32}_{61}&=&J_{21}N_{I,2} + J_{22}N_{I,1},\\ H^{32}_{62}&=&J_{21}N_{I,3} + J_{23}N_{I,1},\\ H^{32}_{63}&=&J_{22}N_{I,3} + J_{23}N_{I,2}. \end{array} $$
(138)

The transposed \({\mathbb {T}}^{T}\) is defined as \({\mathbb {T}}^{T}_{ijk}={\mathbb {T}}_{jik}\). The derivatives of applied transformation matrices read for the stresses \({\mathbb {T}}_{S}={\mathbb {T}}(\bar {a},\bar {b})\) with \(\bar {a}=2\), \(\bar {b}=1\) and for strains \({\mathbb {T}}_{E}={\mathbb {T}}(\bar {a},\bar {b})\) with \(\bar {a}=1\), \(\bar {b}=2\). Note that the notation means \(T_{ij,\hat {X}_{k}}={\mathbb {T}}_{ijk}\). The derivative of the transformation matrix T M with respect to \( \hat {\boldsymbol {X}}_{e}\) is \({\mathbb {T}}_{M}\in \mathbb {R}^{6\times 6\times 24}\). With \((T_{M})_{ij,\hat {X}_{k}}=({\mathbb {T}}_{M})_{ijk}\) the derivative \((\boldsymbol {T}_{M})_{,\hat {X}_{k}}\) can be computed with J=[G 1 G 2 G 3] and \(\boldsymbol {J}^{0}=[\boldsymbol {G}_{1}^{0} \boldsymbol {G}_{2}^{0} \boldsymbol {G}_{3}^{0}]\) resulting in

$$\begin{array}{@{}rcl@{}} (\boldsymbol{T}_{M})_{,\hat{X}_{k}}&=&\left( \bigg((\boldsymbol{J}^{0})^{-T}:\boldsymbol{J}^{0}_{,\hat{X}_{k}}-\boldsymbol{J}^{-T}:\boldsymbol{J}_{,\hat{X}_{k}}\bigg)(\boldsymbol{T}_{S}^{0})^{-T}\right.\\ &&\left.-(\boldsymbol{T}_{S}^{0})^{-T}(\boldsymbol{T}_{S}^{0})^{T}_{,\hat{X}_{k}}(\boldsymbol{T}_{S}^{0})^{-T}\right)\frac{\left|\boldsymbol{J}^{0}\right|}{\left|\boldsymbol{J}\right|}. \end{array} $$
(139)

The scalar product (⋅:⋅) is applied to matrices, as it is defined for tensors. The computation of \(\boldsymbol {J}^{0}_{,\hat {X}_{k}}\) and \(\boldsymbol {J}_{,\hat {X}_{k}}\) is straightforward, details are omitted here. The first derivative of local strains \(\boldsymbol {E}^{h}_{L}\) with respect to \( \hat {X}_{e}\) is \((\boldsymbol {E}^{h}_{L})_{,\hat {X}}=\boldsymbol {Q}=[\boldsymbol {Q}_{1},...,\boldsymbol {Q}_{8}]\) with

$$ \boldsymbol{Q}_{I}=[\boldsymbol{Q}_{I1},\boldsymbol{Q}_{I2},\boldsymbol{Q}_{I3},\boldsymbol{Q}_{I4},\boldsymbol{Q}_{I5},\boldsymbol{Q}_{I6}]^{T} $$
(140)

and

$$\begin{array}{@{}rcl@{}} \boldsymbol{Q}_{I1}&=&N_{I,1}(\boldsymbol{u}_{,1}^{h})^{T},\\ \boldsymbol{Q}_{I2}&=&N_{I,2}(\boldsymbol{u}_{,2}^{h})^{T},\\ \boldsymbol{Q}_{I3}&=&\sum\limits_{L=i}^{iv}\frac{1}{4}(1+{\xi^{1}_{L}}\xi^{1})(1+{\xi^{2}_{L}}\xi^{2})N_{I,3}^{L}(\boldsymbol{u}_{,3}^{L})^{T}\\ \boldsymbol{Q}_{I4}&=&N_{I,1}(\boldsymbol{u}_{,2}^{h})^{T}+N_{I,2}(\boldsymbol{u}_{,1}^{h})^{T},\\ \boldsymbol{Q}_{I5}&=&\frac{1}{2}\left( (1-\xi^{2})(N_{I,1}^{B}(\boldsymbol{u}_{,3}^{B})^{T}+N_{I,3}^{B}(\boldsymbol{u}_{,1}^{B})^{T})\right.\\ &&+(1+\xi^{2})\left( N_{I,1}^{D}(\boldsymbol{u}_{,3}^{D})^{T}+N_{I,3}^{D}(\boldsymbol{u}_{,1}^{D})^{T}\right),\\ \boldsymbol{Q}_{I6}&=&\frac{1}{2}\left( (1-\xi^{1})(N_{I,2}^{A}(\boldsymbol{u}_{,3}^{A})^{T}+N_{I,3}^{A}(\boldsymbol{u}_{,2}^{A})^{T})\right.\\ &&\left.+(1+\xi^{1})(N_{I,2}^{C}(\boldsymbol{u}_{,3}^{C})^{T}+N_{I,3}^{C}(\boldsymbol{u}_{,2}^{C})^{T})\right) . \end{array} $$
(141)

1.3 B.3 Sensitivity and pseudo load matrices

The parts of the pseudo load are approximated as

$$\begin{array}{@{}rcl@{}} p_u^{h}=\delta \hat{u}_{e}\boldsymbol{P}_{u}^{e}\delta \hat{X}_{e},\quad p_{{\hat{S}}}^{h}=\delta \hat{S}^{h}\boldsymbol{P}_{{\hat{S}}}^e\delta \hat{X}_{e},\\ p_{{\bar{E}}}^{h}=\delta \hat{E}^{h}\boldsymbol{P}_{{\hat{E}}}^e\delta \hat{X}_{e}+\delta \tilde{E}^{h}\boldsymbol{P}_{{\tilde{E}}}^e\delta \hat{X}_{e} \end{array} $$
(142)

with matrices

$$\begin{array}{@{}rcl@{}} \boldsymbol{P}_{u}^{e}&=\int\limits_{{\Omega}_{R_{e}}}\left( \boldsymbol{B}^{T} \hat{\boldsymbol{S}}^{h}-\boldsymbol{N}^{T}\boldsymbol{b}\right)\boldsymbol{D}\,d{\Omega}_{e}\\ &+\int\limits_{{\Omega}_{R_{e}}}\boldsymbol{G}+\mathcal{P}\left( \boldsymbol{B}^{T},\,{\mathbb{T}}_{S}^{0},\, \boldsymbol{N}_{L}\boldsymbol \beta_{e}\right)\,d{\Omega}_{e}\\&-\int\limits_{{\Omega}_{R_{e}}}\mathcal{P}\left( \boldsymbol{B}_{L}^{T}\boldsymbol{T}_{S}^{-1},\,{\mathbb{T}}_{S},\,\boldsymbol{T}_{S}^{-1} \hat{\boldsymbol{S}}^{h}\right)\,d{\Omega}_{e}, \end{array} $$
(143)
$$\begin{array}{@{}rcl@{}} \boldsymbol{P}_{{\hat{S}}}^e&=&\int\limits_{{\Omega}_{R_{e}}}\left( \boldsymbol{N}_{S}^{T}(\boldsymbol{E}^{h}- \hat{\boldsymbol{E}}^{h})\right)\boldsymbol{D}\,d{\Omega}_{e}\\ &&+\int\limits_{{\Omega}_{R_{e}}}\mathcal{P}\left( \boldsymbol{N}_{L}^{T},\,({\mathbb{T}}_{S}^{0})^{T},\,(\boldsymbol{E}^{h}- \hat{\boldsymbol{E}}^{h})\right)\,d{\Omega}_{e}\\&&-\int\limits_{{\Omega}_{R_{e}}}\mathcal{P}\left( \boldsymbol{N}_{S}^{T},\,{\mathbb{T}}_{E}^{0},\,\boldsymbol{N}_{L}\boldsymbol \alpha_{e}^{1}\right)\,d{\Omega}_{e}\\ &&+\int\limits_{{\Omega}_{R_{e}}}\boldsymbol{N}_{S}^{T}\boldsymbol{T}_{S}^{-T}\boldsymbol{Q}\,d{\Omega}_{e}\\&&-\int\limits_{{\Omega}_{R_{e}}}\mathcal{P}\left( \boldsymbol{N}_{S}^{T}\boldsymbol{T}_{S}^{-T},\,{\mathbb{T}}_{S}^{T},\,\boldsymbol{T}_{S}^{-T}\boldsymbol{E}^{h}_{L}\right)\,d{\Omega}_{e}, \end{array} $$
(144)
$$ \begin{array}{ll} \boldsymbol{P}_{{\hat{E}}}^e&=\int\limits_{{\Omega}_{R_{e}}}\left( \boldsymbol{N}_{E}^{T}(\bar{\boldsymbol{S}}^{h}- \hat{\boldsymbol{S}}^{h})\right)\boldsymbol{D}\,d{\Omega}_{e}\\ &+\int\limits_{{\Omega}_{R_{e}}}\mathcal{P}\left( \boldsymbol{N}_{L}^{T},\,({\mathbb{T}}_{E}^{0})^{T},\,(\bar{\boldsymbol{S}}^{h}- \hat{\boldsymbol{S}}^{h})\right)\,d{\Omega}_{e}\\&+\int\limits_{{\Omega}_{R_{e}}}\mathcal{P}\left( \boldsymbol{N}_{E}^{T} \bar{C},\,{\mathbb{T}}_{E}^{0},\,\boldsymbol{N}_{L}\boldsymbol \alpha_{e}^{1}\right)\,d{\Omega}_{e}\\ &+\int\limits_{{\Omega}_{R_{e}}}\mathcal{P}\left( \boldsymbol{N}_{E}^{T} \bar{C},\,{\mathbb{T}}_{M},\,\boldsymbol{M}\boldsymbol \alpha_{e}^{2}\right)\,d{\Omega}_{e}\\&-\int\limits_{{\Omega}_{R_{e}}}\mathcal{P}\left( \boldsymbol{N}_{E}^{T},\,{\mathbb{T}}_{S}^{0},\,\boldsymbol{N}_{L}\boldsymbol \beta_{e}\right)\,d{\Omega}_{e} \end{array} $$
(145)

and

$$ \begin{array}{ll} \boldsymbol{P}_{{\tilde{E}}}^{e}&=\int\limits_{{\Omega}_{R_{e}}}\left( \boldsymbol{M}_{E}^{T} \bar{S}^{h}\right)\boldsymbol{D}\,d{\Omega}_{e}\\&+\int\limits_{{\Omega}_{R_{e}}}\left( \mathcal{P}\left( \boldsymbol{M}^{T},\,{\mathbb{T}}_{M}^{T},\, \bar{S}^{h}\right)\right)\,d{\Omega}_{e}\\ &+\int\limits_{{\Omega}_{R_{e}}}\mathcal{P}\left( \boldsymbol{M}_{E}^{T} \bar{C},\,{\mathbb{T}}_{E}^{0},\,\boldsymbol{N}_{L}\boldsymbol \alpha_{e}^{1}\right)\,d{\Omega}_{e}\\&+\int\limits_{{\Omega}_{R_{e}}}\mathcal{P}\left( \boldsymbol{M}_{E}^{T} \bar{C},\,{\mathbb{T}}_{M},\,\boldsymbol{M}\boldsymbol \alpha_{e}^{2}\right)\,d{\Omega}_{e}. \end{array} $$
(146)

The pseudo load and sensitivity matrices P v and S v are obtained by assembly over all finite elements of

$$ \boldsymbol{P}_{v}=\overset{\text{nel}}{\underset{{e=1}}{{{ A}}}}\boldsymbol{P}_{e}, \quad \boldsymbol{S}_{v}=\overset{\text{nel}}{\underset{{e=1}}{{{ A}}}}\boldsymbol{S}_{e} $$
(147)

of the element quantities

$$ \boldsymbol{P}_{e}=\left[\begin{array}{l}\boldsymbol{P}_{u}^{e}\\ \boldsymbol{P}_{{\hat{E}}}^e \\ \boldsymbol{P}_{{\tilde{E}}}^e \\ \boldsymbol{P}_{{\hat{S}}}^e \end{array}\right], \boldsymbol{S}_{e}=\left[\begin{array}{l}\boldsymbol{S}_{u}^{e}\\ \boldsymbol{S}_{{\hat{E}}}^e \\ \boldsymbol{S}_{{\tilde{E}}}^e \\ \boldsymbol{S}_{{\hat{S}}}^e \end{array}\right]. $$
(148)

respectively. To compute the sensitivity matrix their relation

$$ \boldsymbol{P}_{v}=-\boldsymbol{K}_{v}\boldsymbol{S}_{v}. $$
(149)

is used. Static condensation yields

$$ \boldsymbol{P}_{u}=-\boldsymbol{K}_{u}\boldsymbol{S}_{u} $$
(150)

with

$$ \boldsymbol{P}_{u}=\overset{\text{nel}}{\underset{{e=1}}{{{ A}}}}\boldsymbol{P}_{u_{e}} $$
(151)

and the element quantity

$$ \boldsymbol{P}_{u_{e}}=\boldsymbol{P}_{u}^{e}+\boldsymbol{L}_{e}^{T}\boldsymbol{C}_{e}^{-T}\boldsymbol{A}_{e}\boldsymbol{C}_{e}^{-1}\boldsymbol{P}_{{\hat{S}}}^e+\boldsymbol{L}_{e}^{T}\boldsymbol{C}_{e}^{-1}\boldsymbol{P}_{{E}}^e $$
(152)

using the abbreviation \(\boldsymbol {P}_{{E}}^e=\boldsymbol {P}_{{\hat {E}}}^{e}-\boldsymbol {A}_{e}^{12}(\boldsymbol {A}_{e}^{22})^{-1}\boldsymbol {P}_{{\tilde {E}}}^e\). After solving the unknown displacement sensitivities, the sensitivities of stresses and strains can be calculated on element level as follows

$$ \begin{array}{ll} \boldsymbol{S}_{{\hat{E}}}^e&=\boldsymbol{C}_{e}^{-1}(\boldsymbol{L}_{e}\boldsymbol{S}_{u}^{e}+\boldsymbol{P}_{{\hat{S}}}^e),\\ \boldsymbol{S}_{{\tilde{E}}}^e&=-(\boldsymbol{A}_{e}^{22})^{-1}(\boldsymbol{P}_{{\tilde{E}}}^e+\boldsymbol{A}_{e}^{21}\boldsymbol{S}_{{\hat{E}}}^e),\\ \boldsymbol{S}_{{\hat{S}}}^e&=\boldsymbol{C}_{e}^{-T}(\boldsymbol{A}_{e}\boldsymbol{S}_{{\hat{E}}}^e+\boldsymbol{P}_{{E}}^{e}). \end{array} $$
(153)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radau, L., Gerzen, N. & Barthold, FJ. Sensitivity of structural response in context of linear and non-linear buckling analysis with solid shell finite elements. Struct Multidisc Optim 55, 2259–2283 (2017). https://doi.org/10.1007/s00158-016-1639-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1639-3

Keywords

Navigation