Skip to main content
Log in

Obstacles reconstruction from partial boundary measurements based on the topological derivative concept

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this work a new method for obstacles reconstruction from partial boundary measurements is proposed. For a given boundary excitation, we want to determine the quantity, locations and sizes of a number of holes embedded within a geometrical domain, from partial boundary measurements related to such an excitation. The resulting inverse problem is written in the form of an ill-posed and over-determined boundary value problem. The idea therefore is to rewrite it as an optimization problem where a shape functional measuring the misfit between the boundary measurement and the solution to an auxiliary boundary value problem is minimized with respect to a set of ball-shaped holes. The topological derivative concept is used for solving the associated topology optimization problem, leading to a second-order reconstruction algorithm. The resulting algorithm is non-iterative – and thus very robust with respect to noisy data – and also free of initial guess. Finally, some numerical results are presented in order to demonstrate the effectiveness of the proposed reconstruction algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alvarez C, Conca C, Friz L, Kavian O, Ortega JH (2005) Identification of immersed obstacles via boundary measurements. Institute of Physics Publishing Inverse Problems 21(5):1531–1552

    Article  MathSciNet  MATH  Google Scholar 

  • Alves CJS, Ha-Duong T (1999) Inverse scattering for elastic plane cracks. Inverse Prob 15(1):91–97

    Article  MathSciNet  MATH  Google Scholar 

  • Ammari H, Kang H (1846) Reconstruction of small inhomogeneities from boundary measurements. Lectures Notes in Mathematics. Springer-Verlag, Berlin, p 2004

    Google Scholar 

  • Amstutz S, Dominguez N (2008) Topological sensitivity analysis in the context of ultrasonic non-destructive testing. Engineering Analysis with Boundary Elements 32(11):936–947

    Article  MATH  Google Scholar 

  • Amstutz S, Horchani I, Masmoudi M (2005) Crack detection by the topological gradient method. Control Cybern 34(1):81–101

    MathSciNet  MATH  Google Scholar 

  • Andrieux S, Abda AB, Bui HD (1999) Reciprocity principle and crack identification. Inverse Prob 15:59–65

    Article  MathSciNet  MATH  Google Scholar 

  • Bonnet M (2006) Topological sensitivity for 3d elastodynamic and acoustic inverse scattering in the time domain. Comput Methods Appl Mech Eng 195(37-40):5239–5254

    Article  MathSciNet  MATH  Google Scholar 

  • Bonnet M (2009) Higher-order topological sensitivity for 2-D potential problems. Int J Solids Struct 46 (11–12):2275–2292

    Article  MATH  Google Scholar 

  • Burger M (2001) A level set method for inverse problems. Inverse Prob 17:1327–1356

    Article  MathSciNet  MATH  Google Scholar 

  • Canelas A, Laurain A, Novotny AA (2014) A new reconstruction method for the inverse potential problem. J Comput Phys 268:417–431

    Article  MathSciNet  MATH  Google Scholar 

  • Canelas A, Laurain A, Novotny AA (2015) A new reconstruction method for the inverse source problem from partial boundary measurements. Inverse Prob 31(7):075009

    Article  MathSciNet  MATH  Google Scholar 

  • Capdeboscq Y, Vogelius MS (2003a) A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Mathematical Modelling and Numerical Analysis 37(1):159–173

    Article  MathSciNet  MATH  Google Scholar 

  • Capdeboscq Y, Vogelius MS (2003b) Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. Mathematical Modelling and Numerical Analysis 37(2):227–240

    Article  MathSciNet  MATH  Google Scholar 

  • Carpio A, Rapún M-L (2008) Solving inhomogeneous inverse problems by topological derivative methods. Inverse Prob 24(4):045014

    Article  MathSciNet  MATH  Google Scholar 

  • Caubet F, Dambrine M (2012) Localization of small obstacles in stokes flow. Inverse Prob 28(10):1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Cedio-Fengya DJ, Moskow S, Vogelius MS (1998) Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Prob 14(3):553–595

    Article  MathSciNet  MATH  Google Scholar 

  • Colton D, Kirsch A (1996) A simple method for solving inverse scattering problems in the resonance region. Inverse Prob 12:383–393

    Article  MathSciNet  MATH  Google Scholar 

  • Colton D, Haddar H, Piana M (2003) The linear sampling method in inverse electromagnetic scattering theory. Inverse Prob 19:S105—S137

    Article  MathSciNet  MATH  Google Scholar 

  • de Faria RJ, Novotny AA (2009) On the second order topologial asymptotic expansion. Struct Multidiscip Optim 39(6):547–555

  • Doel K, Ascher U, Leitao A (2010) Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems. J Sci Comput 43:44–66

    Article  MathSciNet  MATH  Google Scholar 

  • Dominguez N, Gibiat V, Esquerre Y (2005) Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection. Wave Motion 42:31–52

    Article  MathSciNet  MATH  Google Scholar 

  • Dorn O, Lesselier D (2006) Level set methods for inverse scattering. Inverse Prob 22:R67—R131

    Article  MathSciNet  MATH  Google Scholar 

  • Feijóo GR, Oberai AA, Pinsky PM (2004) An application of shape optimization in the solution of inverse acoustic scattering problems. Inverse Prob 20:199–228

    Article  MathSciNet  MATH  Google Scholar 

  • Guillaume P, Sid Idris K (2002) The topological asymptotic expansion for the Dirichlet problem. SIAM J Control Optim 41(4):1042–1072

    Article  MathSciNet  MATH  Google Scholar 

  • Guzina BB, Bonnet M (2006) Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics. Inverse Prob 22(5):1761–1785

    Article  MathSciNet  MATH  Google Scholar 

  • Guzina BB, Bonnet M (2004) Topological derivative for the inverse scattering of elastic waves. Q J Mech Appl Math 57(2):161–179

    Article  MathSciNet  MATH  Google Scholar 

  • Guzina BB, Chikichev I (2007) From imaging to material identification: a generalized concept of topological sensitivity. J Mech Phys Solids 55(2):245–279

    Article  MathSciNet  MATH  Google Scholar 

  • Hintermüller M, Laurain A (2008) Electrical impedance tomography: from topology to shape. Control Cybern 37(2):913–933

    MathSciNet  MATH  Google Scholar 

  • Hintermüller M, Laurain A, Novotny AA (2012) Second-order topological expansion for electrical impedance tomography. Adv Comput Math 36(2):235–265

    Article  MathSciNet  MATH  Google Scholar 

  • Isakov V (1990) Inverse source problems. American Mathematical Society. Providence, Rhode Island

    Book  Google Scholar 

  • Kohn R, Vogelius M (1984) Identification of an unknow conductivity by means of measurements at the boundary. Inverse Prob 14:113–123

    Google Scholar 

  • Kozlov VA, Maz’ya VG, Movchan AB (1999) Asymptotic analysis of fields in multi-structures. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Kress R (1995) Integral equation methods in inverse obstacle scattering. Engineering Analysis with Boundary Elements 15:171–179

    Article  Google Scholar 

  • Kress R (1996) Inverse elastic scattering from a crack. Inverse Prob 12:667–684

    Article  MathSciNet  MATH  Google Scholar 

  • Leitão A, Baumeister J (2005) Topics in Inverse Problems. IMPA Mathematical Publications, Rio de Janeiro

    MATH  Google Scholar 

  • Liepa V, Santosa F, Vogelius M (1993) Crack determination from boundary measurements - reconstruction using experimental data. J Nondestruct Eval 12(3)

  • Litman A (2005) Reconstruction by level sets of n-ary scattering obstacles. Inverse Prob 21:S131—S152

    Article  MathSciNet  MATH  Google Scholar 

  • Machado TJ, Angelo JS, Novotny AA (2016) A new one-shot pointwise source reconstruction method. Math Methods Appl Sci:1099–1476

  • Maz’ya VG, Nazarov SA, Plamenevskij BA (2000) Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. I, Operator Theory: Advances and Applications. Translated from the German by Georg Heinig and Christian Posthoff, Birkhäuser Verlag, Volume 111

  • Nishimura N, Kobayashi S (1994) Determination of cracks having arbitrary shapes with the boundary integral equation method. Engineering Analysis with Boundary Elements 15:189–195

    Article  Google Scholar 

  • Novotny AA, Sokołowski J. (2013) Topological derivatives in shape optimization. Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  • Prilepko AI (1974) Über existenz und eindeutigkeit von lösungen inverser probleme der potentialtheorie. Mathematische Nachrichten 63:135–153

    Article  MathSciNet  MATH  Google Scholar 

  • Sokołowski J, żochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was partly supported by CNPq (Brazilian Research Council), CAPES (Brazilian Higher Education Staff Training Agency) and FAPERJ (Research Foundation of the State of Rio de Janeiro). These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Novotny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, S.S., Novotny, A.A. Obstacles reconstruction from partial boundary measurements based on the topological derivative concept. Struct Multidisc Optim 55, 2131–2141 (2017). https://doi.org/10.1007/s00158-016-1632-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1632-x

Keywords

Navigation