Skip to main content

Advertisement

Log in

Grayscale-free topology optimization for electromagnetic design problem of in-vehicle reactor

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this paper, we propose grayscale-free topology optimization for a reactor design problem where the electromagnetic performance needs to be optimized. A reactor is an electric device to boost electric voltage, and is used as a part of a DC-DC converter in electric and hybrid vehicles. When designing reactors, we need to consider many performance indicators such as inductance and fringing loss. In general, high-performance reactor design that satisfies all requirements is not obvious, and topology optimization is promising for such non-trivial design problems. In this paper, we therefore establish a framework for the electromagnetic design of an in-vehicle reactor on the basis of boundary tracking type level-set topology optimization, which realizes grayscale-free topology optimization. Because of its grayscale-free characteristic, the established framework can completely resolve the numerical problems caused by the so-called grayscale elements. We present several numerical examples to demonstrate the usefulness of the established framework, and we discuss the possibilities for the expansion of the established framework to more difficult and valuable design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393. doi:10.1016/j.jcp.2003.09.032

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Challis VJ, Guest JK (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79(10):1284–1308. 10.1002/nme.2616

    Article  MathSciNet  MATH  Google Scholar 

  • Dede EM, Lee J, Nomura T (2014) Multiphysics Simulation: Electromechanical System Applications and Optimization. Springer, London. doi:10.1007/978-1-4471-5640-6

    Book  MATH  Google Scholar 

  • Furukawa Y, Nomura T, Yamada T, Izui K, Nishiwaki S (2015) Structural optimization of inductor based on topology optimization method (in japanese). In: Proceedings of Mechanical Engineering Conference, 2015 Japan, JSME, Sapporo, J1240105

  • Ha SH, Cho S (2005) Topological shape optimization of heat conduction problems using level set approach. Numer Heat Trans, Part B 48(1):67–88. doi:10.1080/10407790590935966

    Article  Google Scholar 

  • Haslinger J, Hillebrand A, Kärkkäinen T, Miettinen M (2002) Optimization of conducting structures by using the homogenization method. Struct Multidiscip Optim 24(2):125–140. doi:10.1007/s00158-002-0223-1

    Article  Google Scholar 

  • Iga A, Nishiwaki S, Izui K, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Heat Mass Transf 52(11–12):2721–2732. doi:10.1016/j.ijheatmasstransfer.2008.12.013

  • Jensen JS, Sigmund O (2004) Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends. Applied Physics Letters 84(12):2022–2024. doi:10.1063/1.1688450

    Article  Google Scholar 

  • Jensen JS, Sigmund O, Frandsen LH, Borel PI, Harpoth A, Kristensen M (2005) Topology design and fabrication of an efficient double 90 ° photonic crystal waveguide bend. IEEE Photon Technol Lett 17(6):1202–1204. doi:10.1109/LPT.2005.846502

    Article  Google Scholar 

  • Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44(1):19–24. doi:10.1007/s00158-010-0562-2

    Article  MATH  Google Scholar 

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781. doi:10.1002/nme.3072

    Article  MathSciNet  MATH  Google Scholar 

  • Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Methods Eng 71(11):1261–1296. doi:10.1002/nme.1974

    Article  MATH  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys 78(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Otomori M, Yamada T, Izui K, Nishiwaki S, Andkjær J (2012) A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials. Comput Methods Appl Mech Eng 237–240:192–211, doi:10.1016/j.cma.2012.04.022

  • Pingen G, Evgrafov A, Maute K (2007) Topology optimization of flow domains using the lattice Boltzmann method. Struct Multidiscip Optim 34(6):507–524. doi:10.1007/s00158-007-0105-7

    Article  MathSciNet  MATH  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level-set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21 (2):120–127. doi:10.1007/s001580050176

    Article  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Methods Eng 87(9):844–868. doi:10.1002/nme.3135

    Article  MathSciNet  MATH  Google Scholar 

  • Yamasaki S, Kawamoto A, Nomura T (2012a) Compliant mechanism design based on the level set and arbitrary Lagrangian Eulerian methods. Struct Multidiscip Optim 46(3):343–354. doi:10.1007/s00158-011-0738-4

    Article  MathSciNet  MATH  Google Scholar 

  • Yamasaki S, Nomura T, Sato K, Michishita N, Yamada Y, Kawamoto A (2012b) Level set-based topology optimization targeting dielectric resonator-based composite right- and left-handed transmission lines. Int J Numer Methods Eng 89(10):1272–1295. doi:10.1002/nme.3287

    Article  MATH  Google Scholar 

  • Yamasaki S, Kawamoto A, Nomura T, Fujita K (2015) A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh. Int J Numer Methods Eng 101(10):744–773. doi:10.1002/nme.4826

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state navier-stokes flow. J Comput Phys 227(24):10,178–10,195. doi:10.1016/j.jcp.2008.08.022

    Article  MathSciNet  Google Scholar 

  • Zhou S, Li W, Li Q (2010) Level-set based topology optimization for electromagnetic dipole antenna design. J Comput Phys 229(19):6915–6930. doi:10.1016/j.jcp.2010.05.030

    Article  MathSciNet  MATH  Google Scholar 

  • Zhuang CG, Xiong ZH, Ding H (2007) A level set method for topology optimization of heat conduction problem under multiple load cases. Comput Methods Appl Mech Eng 196(4–6):1074–1084. doi:10.1016/j.cma.2006.08.005

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shintaro Yamasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamasaki, S., Kawamoto, A., Saito, A. et al. Grayscale-free topology optimization for electromagnetic design problem of in-vehicle reactor. Struct Multidisc Optim 55, 1079–1090 (2017). https://doi.org/10.1007/s00158-016-1557-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1557-4

Keywords

Navigation