Skip to main content

Advertisement

Log in

A minimal mass deployable structure for solar energy harvesting on water canals

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper produces a design for a minimal mass, deployable support structure for a solar panel covering of water canals. The results are based upon the minimal mass properties of tensegrity structures. The efficient structure is a tensegrity system which has an optimal complexity (i.e. an optimal number of members) for minimal mass. This optimal complexity is derived in this paper, along with deployable schemes which are useful for construction, repairs, for Sun following, and for servicing. It is shown that the minimal structure naturally has deployable features so that extra mass is not needed to add the multifunctional features. The design of bridge structures with tensegrity architecture will show an optimal complexity depending only on material choices and external loads. The minimization problem considers a distributed load (from weight of solar panels and wind loads), subject to buckling and yielding constraints. The result is shown to be a Class 1 Tensegrity substructure (support structure only below the deck). These structures, composed of axially-loaded members (tension and compressive elements), can be easily deployable and have many port-able applications for small spans. The focus of this paper is an application of these minimal mass tensegrity concepts to design shading devices to prevent or reduce evaporation loss, while generating electric power with solar panels as the cover. While the economics of the proposed designs are far from finalized, this paper shows a technical solution that uses the smallest material resources, and shows the technical feasibility of the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Carpentieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpentieri, G., Skelton, R.E. & Fraternali, F. A minimal mass deployable structure for solar energy harvesting on water canals. Struct Multidisc Optim 55, 449–458 (2017). https://doi.org/10.1007/s00158-016-1503-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1503-5

Keywords

Navigation