Skip to main content
Log in

Free material optimization for laminated plates and shells

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Free Material Optimization (FMO) is a powerful approach for conceptual optimal design of composite structures. The design variable in FMO is the entire elastic material tensor which is allowed to vary almost freely over the design domain. The imposed requirements on the tensor are that it is symmetric and positive semidefinite. Most of today’s studies on FMO focus on models for two- and three-dimensional structures. The objective of this article is to extend existing FMO models and methods to laminated plate and shell structures, which are used in many engineering applications. In FMO, the resulting optimization problem is generally a non convex semidefinite program with many matrix inequalities which requires special-purpose optimization methods. The FMO problems are efficiently solved by a primal-dual interior point method developed and implemented by the authors. The quality of the proposed FMO models and the method are supported by several large-scale numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alizadeh F, Haeberly JA, Overton ML (2009) Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J Optim 8(3):746–768

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1997) Robust truss topology design via semidefinite programming. SIAM J Optim 7(4):991–1016

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Díaz AR (1993) Optimization of material properties for Mindlin plate design. Structural Optimization 6:268–270

    Article  Google Scholar 

  • Bendsøe MP, Guedes JM, Haber RB, Pedersen P, Taylor JE (1994) An analytical model to predict optimal material properties in the context of optimal structural design. J Appl Mech 61:930–937

    Article  MathSciNet  MATH  Google Scholar 

  • Blouza A, Dret HL (2001) Nagdhi’s shell model: existence, uniqueness and continuous dependence on the midsurface. J Elast 64:199–216

    Article  MATH  Google Scholar 

  • Bodnár G, Stadelmeyer P, Bogomolny M (2008) Methods for computer aided interpretation of FMO results. Tech. rep., PLATO-N Public Report PU-R-3-2008. Available from http://www.plato-n.org/

  • Chapelle D, Bathe KJ (2003) The finite element analysis of shells - fundamentals. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Czarnecki S, Czubacki R, Dzierzanowski G, Lewiński T (2014) The free material design of thin elastic shells. In: Shell Structures: Theory and Applications - Proceedings of the 10th SSTA 2013 Conference, vol 3, pp 73–76

  • Czarnecki S, Lewiński T (2010) The free material optimization of elastic plates and membrane shells. the case of two loading conditions. In: Shell Structures: Theory and Applications - Proceedings of the 9th SSTA 2019 Conference, vol 2, pp 59–62

  • Czarnecki S, Lewiński T (2013) On minimum compliance problems of thin elastic plates of varying thickness. Struct Multidiscip Optim 48(1):17–31

    Article  MathSciNet  MATH  Google Scholar 

  • Gaile S (2011) Free material optimization for shells and plates. Ph.D. thesis, Institute of Applied Mathematics II Friedrich-Alexander University of Erlangen-Nuremberg

  • Haslinger J, Kočvara M, Leugering G, Stingl M (2010) Multidisciplinary free material optimization. SIAM J Appl Math 70(7):2709–2728

    Article  MathSciNet  MATH  Google Scholar 

  • Helmberg C, Rendl F, Vanderbei RJ, Wolkowicz H (1996) An interior-point method for semidefinite programming. SIAM J Optim 6:342–361

    Article  MathSciNet  MATH  Google Scholar 

  • Kojima M, Shindoh S, Hara S (1997) Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J Optim 7(1):86–125

    Article  MathSciNet  MATH  Google Scholar 

  • Kočvara M, Stingl M (2003) A code for convex nonlinear and semidefinite programming. Optimization Methods and Software 18(3):317–333

    Article  MathSciNet  MATH  Google Scholar 

  • Kočvara M, Stingl M (2007) Free material optimization for stress constraints. Struct Multidiscip Optim 33:323–355

    Article  MathSciNet  MATH  Google Scholar 

  • Kočvara M, Stingl M, Zowe J (2008) Free material optimization: recent progress. Optimization 57 (1):79–100

    Article  MathSciNet  MATH  Google Scholar 

  • Lee SJ, Bae JE, Hinton E (2000) Shell topology optimization using the layered artificial material model. Int J Numer Methods Eng 47:843–867

    Article  MATH  Google Scholar 

  • Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8:109–124

    Article  MATH  Google Scholar 

  • Monteiro RDC (1997) Primal-dual path-following algorithms for semidefinite programming. SIAM J Optim 7 (3):663– 678

    Article  MathSciNet  MATH  Google Scholar 

  • Nesterov YE, Todd MJ (1997) Self-scaled barriers and interior-point methods for convex programming. Math Oper Res 22(1):1– 42

    Article  MathSciNet  MATH  Google Scholar 

  • Nesterov YE, Todd MJ (1998) Primal-dual interior-point methods for self-scaled cones. SIAM J Optim 8 (2):324–364

    Article  MathSciNet  MATH  Google Scholar 

  • Reddy J (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. London

  • Ringertz UT (1993) On finding the optimal distribution of material properties. Structural Optimization 5:265–267

    Article  Google Scholar 

  • Stegmann J (2004) Analysis and optimization of laminated composite shell structures. Ph.D. thesis, Institute of Mechanical Engineering, Aalborg University, Aalborg, Denmark. Available from http://www.researchgate.net/

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2007

    Article  MATH  Google Scholar 

  • Stingl M (2006) On the solution of nonlinear semidefinite programs by augmented lagrangian method. Ph.D. thesis, Institute of Applied Mathematics II, Friedrich-Alexander University of Erlangen-Nuremberg. Available from http://www2.am.uni-erlangen.de/

  • Stingl M, Kočvara M, Leugering G (2009a) Free material optimization with fundamental eigenfrequency constraints. SIAM J Optim 20(1):524–547

  • Stingl M, Kočvara M, Leugering G (2009b) A new non-linear semidefinite programming algorithm with an application to multidisciplinary free material optimization. Int Ser Numer Math 158:275–295

  • Stingl M, Kočvara M, Leugering G (2009c) A sequential convex semidefinite programming algorithm with an application to multiple-load free material optimization. SIAM J Optim 20(1):130–155

  • Weldeyesus AG, Stolpe M (2014) A primal-dual interior point method for large-scale free material optimization. Comput Optim Appl 61(2):409–435

    Article  MathSciNet  MATH  Google Scholar 

  • Werner R (2001) Free material optimization-mathematical analysis and numerical solution. Ph.D. thesis, Institute of Applied Mathematics II Friedrich-Alexander University of Erlangen-Nuremberg

  • Yang BJ, Chen CJ (1996) Stress-based topology optimization. Structural Optimization 12:98–105

    Article  Google Scholar 

  • Zhang Y (1998) On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J Optim 8(2):365–386

    Article  MathSciNet  MATH  Google Scholar 

  • Zowe J, Kočvara M, Bendsøe MP (1997) Free material optimization via mathematical programming. Math Program 79:445–466

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere gratitude to our colleague José Pedro Blasques for many and fruitful discussions on optimal design of composite structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Stolpe.

Additional information

The research was partially funded by the Danish Council for Strategic Research through the Danish Center for Composite Structures and Materials (DCCSM) and the Danish Council for Independent Research—Technology and Production Sciences through the research project Optimal Design of Composite Structures under Manufacturing Constraints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weldeyesus, A.G., Stolpe, M. Free material optimization for laminated plates and shells. Struct Multidisc Optim 53, 1335–1347 (2016). https://doi.org/10.1007/s00158-016-1416-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1416-3

Keywords

Navigation