Skip to main content

Advertisement

Log in

Integrating variable wind load, aerodynamic, and structural analyses towards accurate fatigue life prediction in composite wind turbine blades

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A comprehensive fatigue analysis framework for composite wind turbine blades has been developed. It includes variable wind loads from wind field simulation and aerodynamic analysis, stress prediction by finite element analysis, and fatigue damage evaluation based on the resulting fatigue data. The variable wind load is represented by a joint distribution of mean wind speed and turbulence intensity. In order to simulate realistic wind loads applied on the blade while maintaining affordable computational time, the sectional surface pressure fields obtained from the potential flow aerodynamics model XFOIL are transformed to match the lift, drag, and moment coefficients obtained using AeroDyn. Thus, the modified pressure distribution includes the effect of dynamic stall, rotation, and wake effects on the blade aerodynamics. A high-fidelity finite element blade model, in which the design of composite materials can be easily tailored, has been parameterized for detailed stress analysis. The non-proportional multi-axial complex stress states are involved when calculating 10-min fatigue damage of section points through laminate thickness. The annual fatigue damage is calculated based on the 10-min fatigue damage and the joint distribution of 10-min mean wind speed and 10-min turbulence intensity. Consequently, the blade fatigue effect due to not only the mean wind speed and the atmospheric turbulence in the short term, but also the wind load variation in a large spatiotemporal range, can be investigated. The developed fatigue analysis framework can facilitate reliability analysis and reliability-based design optimization of composite wind turbine blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ASTM:

American Society for Testing and Materials

BEM:

Blade element momentum

CFD:

Computational fluid dynamics

CLD:

Constant life diagram

DES:

Detached Eddy Simulation

DOE:

U.S. Department of Energy

EPSCoR:

Experimental Program to Stimulate Competitive Research

FAST:

Fatigue, Aerodynamics, Structures, and Turbulence

FE:

Finite element

FEA:

Finite element analysis

HAWT:

Horizontal axis wind turbine

IAWIND:

Iowa Alliance for Wind Innovation and Novel Development

IEC:

International Electrotechnical Commission

MLE:

Maximum likelihood estimation

MSU:

Montana State University

NACA:

National Advisory Committee for Aeronautics

NREL:

National Renewable Energy Laboratory

PDF:

Probability density function

PSD:

Power spectral density

RMS:

Root mean square

SNL:

Sandia National Laboratories

References

  • ABAQUS/CAE version 6.11 (2011), Abaqus user documentations, dassault systems

  • ASTM Committee (2004) Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain-life (ε-N) fatigue data, Designation: E739-91 (Reapproved 2004). ASTM International, West Conshohocken

    Google Scholar 

  • ASTM Committee (2005) Standard practices for cycle counting in fatigue analysis. ASTM International, West Conshohocken

  • Bottasso CL, Campagnolo F, Croce A, Dilli S, Gualdoni F, Nielsen MB (2014) Structural optimization of wind turbine rotor blades by multilevel sectional/multibody/3D-FEM analysis. Multibody Sys Dyn 32:87–116

    Article  Google Scholar 

  • Burton T, Jenkins N, Sharpe D, Bossanyi E (2011) Wind energy handbook, 2nd edn. John Wiley & Sons, Ltd, West Sussex

    Book  Google Scholar 

  • CorecellTM M-Foam the Marine Foam [online database]. URL: http://www.gurit.com/corecell-mfoam-1.aspx

  • Drela M, Youngren H (2001) XFOIL 6.9 user guide. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Fossum PK, FrØyd L, Dahlhaug OG (2013) Design and fatigue performance of large utility-scale wind turbine blades. J Sol Energy Eng 135:031019-1–031019-11

    Article  Google Scholar 

  • Found MS, Quaresimin M (2003) Two-stage fatigue loading of woven carbon fibre reinforced laminates. Fatigue Fract Mater Eng Struct 26:17–26

    Article  Google Scholar 

  • Fujii T, Lin F (1995) Fatigue behavior of a plain-woven glass fabric laminate under tension/torsion biaxial loading. J Compos Mater 29:573–590

    Article  Google Scholar 

  • Gamstedt EK, Sjögren BA (2002) An experimental investigation of the sequence effect in block amplitude loading of cross-ply composite laminates. Int J Fatigue 24:437–446

    Article  Google Scholar 

  • Germanisher Lloyd G (2010) Guideline for the certification of wind turbines edition 2010. Hamburg, Germany

  • Glauert H (1935) Airplane propellers. In: WF Durand (ed) Aerodynamic theory, Division L, Chapter XI. Springer Verlag: Berlin

  • Griffith DT, Ashwill TD (2011) The sandia 100-meter all-glass baseline wind turbine blade: SNL 100–00. SANDIA REPORT SAND2011-3779, Sandia National Laboratories, USA

  • Grujicic M, Arakere G, Pandurangan B, Sellappan V, Vallejo A, Ozen M (2010) Multidisciplinary design optimization for glass-fiber epoxy-matrix composite 5 MW horizontal-axis wind-turbine blades. J Mater Eng Perform 19:1116–1127

    Article  Google Scholar 

  • Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HA (2006) State of the art in wind turbine aerodynamic and aeroelasticity. Prog Aerosp Sci 42:285–330

    Article  Google Scholar 

  • Harris B (2003) Fatigue in composites: science and technology of the fatigue response of fibre-reinforced plastics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Hashin Z, Rotem A (1973) A fatigue failure criterion for fibre-reinforced materials. J Compos Mater 7:448–464

    Article  Google Scholar 

  • Hoog RV, McKean JW, Craig AT (2005) Introduction to mathematical statistics, 6th edn. Pearso Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hu W, Choi KK, Gaul NJ, Cho H, Zhupanska O (2012a) Reliability analysis of wind turbine blades for fatigue life under wind load uncertainty. 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis

    Book  Google Scholar 

  • Hu W, Han I, Park SC, Choi DH (2012b) Multi-objective structural optimization of a HAWT composite blade based on ultimate limit state analysis. J Mech Sci Technol 26(1):129–135

    Article  Google Scholar 

  • Hu Z, Li H, Du X, Chandrashekhara K (2013a) Simulation-based time-dependent reliability analysis for composite hydrokinetic turbine blades. Struct Multidiscip Optim 47:765–781

    Article  Google Scholar 

  • Hu W, Park D, Choi DH (2013b) Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight. Eng Optim 45(12):1469–1487

    Article  Google Scholar 

  • HyperWorks 11.0 (2012), HyperWorks desktop user’s guide. Altair Engineering, Inc.

  • International Electrotechnical Commission. (2005) Wind turbines - part I: design requirements. IEC standard, 61400–1 Third Edition

  • Jones RM (1999) Mechanics of composite materials, 2nd edn. Taylor & Francis, Inc, Philadelphia, pp 102–107

    Google Scholar 

  • Jonkman BJ (2009) TurbSim user’s guide: version 1.50. NREL/TP-500-46198, Golden, CO, National Renewable Energy Laboratory

  • Jonkman JM, Buhl ML (2005) FAST user’s guide. NREL/EL-500-38230, Golden, CO, National Renewable Energy Laboratory

  • Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. NREL/TP-500-38060, Golden, CO, National Renewable Energy Laboratory

  • Kong C, Bang J, Sugiyama Y (2005) Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy 30:2101–2114

    Article  Google Scholar 

  • Kong C, Kim T, Han D, Sugiyama Y (2006) Investigation of fatigue life for a medium scale composite wind turbine blade. Int J Fatigue 28:1382–1388

    Article  MATH  Google Scholar 

  • Leishman JG, Beddoes TS (1989) A semi-empirical model for dynamic stall. J Am Helicopter Soc 34(3):3–17

    Google Scholar 

  • Liu Y, Mahadevan S (2005) Probabilistic fatigue life prediction of multidirectional composite laminates. Compos Struct 69:11–19

    Article  Google Scholar 

  • Liu Y, Mahadevan S (2007) A unified multiaxial fatigue damage model for isotropic and anisotropic materials. Int J Fatigue 29:347–359

    Article  MATH  Google Scholar 

  • Mandell JF, Samborsky DD (2014) SNL/MSU/DOE composite material fatigue database mechanical properties of composite materials for wind turbine blades version 23.0. Montana State University, Bozeman

    Google Scholar 

  • Manwell JF, McGowan JG, Rogers AL (2009) Wind energy explained: theory, design and application, 2nd edn. John Wiley & Sons, Ltd, West Sussex

    Book  Google Scholar 

  • MATLAB R2012a (2012) Matlab help, The MathWorks, Inc.

  • Mishnaevsky L, Brøndsted P, Nijssen R, Lekou DJ, Philippidis TP (2012) Materials of large wind turbine blades: recent results in testing and modeling. Wind Energy 15:83–97

    Article  Google Scholar 

  • Moriarty PJ, Hansen AC (2005) AeroDyn theory manual. NREL/EL-500-3881, Golden, CO, National Renewable Energy Laboratory

  • Moriarty PJ, Holley WE, Butterfield SP (2004) Extrapolation of extreme and fatigue loads using probabilistic methods. NREL/TP-500-34421, Golden, CO, National Renewable Energy Laboratory

  • Noda M, Flay RGJ (1999) A simulation model for wind turbine blade fatigue loads. J Wind Eng Ind Aerodyn 83:527–540

    Article  Google Scholar 

  • Noh Y, Choi KK, Lee I (2010) Identification of marginal and joint CDFs using Bayesian method for RBDO. Struct Multidiscip Optim 40(1):35–51

    Article  MathSciNet  MATH  Google Scholar 

  • Nussbaumer A, Borges L, Davaine L (2011) Fatigue design of steel and composite structures. European Convention for Constructional Steelwork, Berlin

    Google Scholar 

  • OPTIMAT BLADES. Reliable optimal use of materials for wind turbine rotor blades, contract no. ENK6-CT-2001-00552, 2001–2006. URL: http://www.wmc.eu/optimatblades.php

  • Paepegem WV, Degrieck J (2002) Effects of load sequence and block loading on the fatigue response of fibre-reinforced composites. Mech Adv Mater Struct 9(1):19–35

    Article  MATH  Google Scholar 

  • Petrone G, Nicola C, Quagliarella D, Witteveen J, Iaccarino G (2011) Wind turbine performance analysis under uncertainty. 49th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition, Orlando

    Book  Google Scholar 

  • Philippidis TP, Vassilopoulos AP (2002) Complex stress state effect on fatigue life of GRP laminates. Part II, theoretical formulation. Int J Fatigue 24:825–830

    Article  Google Scholar 

  • Philippidis TP, Vassilopoulos AP (2004) Life prediction methodology for GFRP laminates under spectrum loading. Compos A: Appl Sci Manuf 35:657–666

    Article  Google Scholar 

  • Pro/ENGINEER wildfire 5.0 (2009), Pro/E help manual. Parametric Technology Corporation

  • Puck A, Kopp J, Knops M (2002) Guidelines for the determination of the parameters in Puck’s action plane strength criterion. Compos Sci Technol 62:371–378

    Article  Google Scholar 

  • Ragan P, Manuel L (2007) Comparing estimates of wind turbine fatigue loads using time-domain and spectral methods. Wind Eng 31:83–99

    Article  Google Scholar 

  • Ronold KO, Christensen CJ (2001) Optimization of a design code for wind-turbine rotor blades in fatigue. Eng Struct 23:993–1004

    Article  Google Scholar 

  • Ronold KO, Wedel-Heinen J, Christensen CJ (1999) Reliability-based fatigue design of wind-turbine rotor blades. Eng Struct 21:1101–1114

    Article  Google Scholar 

  • Shokrieh MM, Rafiee R (2006) Simulation of fatigue failure in a full composite wind turbine blade. Compos Struct 74:332–342

    Article  Google Scholar 

  • Söker H, Kensche C (2004) Introducing Low cycle fatigue in IEC standard range pair spectra. Proceeding of the German Wind Energy Conference DEWEK, Wilhelmshaven

    Google Scholar 

  • Spera DA (1998) Wind turbine technology fundamental concepts of wind turbine engineering. New York, ASME

    Google Scholar 

  • Sun XS, Haris A, Tan VBC, Tay TE, Narasimalu S, Della CN (2012) A multi-axial fatigue model for fiber-reinforced composite laminates based on Puck’s criterion. J Compos Mater 46:449–469

    Article  Google Scholar 

  • Vassilopoulos AP (2010) Fatigue life prediction of composites and composite structures. CRC Press, Boca Raton

    Book  Google Scholar 

  • Vassilopoulos AP, Keller T (2011) Fatigue of fiber-reinforced composites. Springer, London

    Book  Google Scholar 

  • Veers PS (1988) Three-dimensional wind simulation. SANDIA Report SAND88-0152 UC-261, Sandia National Laboratories, USA

    Google Scholar 

  • Veers PS, Winterstein SR (1997) Application of measured loads to wind turbine fatigue and reliability analysis. ASME Wind Energy Symposium-Held in conjunction with the AIAA Aerospace Sciences Meeting, Reno

    Book  Google Scholar 

  • Veers PS, Ashwill TD, Sutherland HJ, Laird DL, Lobitz DW, Griffin DA, Mandell JF, Musial WD, Jackson K, Zuteck M, Miravete A, Tsai SW, Richmond JL (2003) Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy 6:245–259

    Article  Google Scholar 

  • Wang L, Liu X, Renevier N, Stables M, Hall GM (2014) Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory. Energy 76:487–501

    Article  Google Scholar 

  • Wei Z, Forte TP (2010) Multi-axial fatigue life assessment of wind turbine structural components. Proceedings of the ASME 2010 4th International Conference on Energy Sustainability ES2010, Phoenix

    Book  Google Scholar 

  • Winterstein SR, Veers PS (2000) A numerical analysis of the fatigue and reliability of wind turbine components. SANDIA REPORT SAND94-2459, Sandia National Laboratories

  • Wind data from Anemometer Loan Programs, Wind Powering America (2999). URL: http://www.windpoweringamerica.gov/anemometerloans/projects.asp

  • Wind data from IAWIND and Iowa EPSCoR Data Download Site (2999). URL: https://epscor2.cgrer.uiowa.edu/html/download.html

  • Wind data from UMass Wind Energy Center (2999). URL: http://www.umass.edu/windenergy/publications/resource/index.html

  • Yu D, Kwon OJ (2014) Predicting wind turbine blade loads and aeroelastic response using a coupled CFD-CSD method. Renew Energy 70:184–196

Download references

Acknowledgments

This work is primarily supported by the Iowa Alliance Wind Innovation and Novel Development (IAWIND) 09-IPF-15 and by the National Science Foundation EPSCoR under Grant Number EPS-1101284. Any opinions, findings, and conclusions or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of the National Science Foundation. Weifei Hu also extends his gratitude to Dr. Hyunkyoo Cho, Dr. Nicholas J. Gaul, and Dr. Ed Hardee for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Choi, K.K., Zhupanska, O. et al. Integrating variable wind load, aerodynamic, and structural analyses towards accurate fatigue life prediction in composite wind turbine blades. Struct Multidisc Optim 53, 375–394 (2016). https://doi.org/10.1007/s00158-015-1338-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1338-5

Keywords

Navigation