Skip to main content
Log in

An adaptive RBF-based multi-objective optimization method for crashworthiness design of functionally graded multi-cell tube

  • INDUSTRIAL APPLICATION
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Multi-objective optimization (MOO) problems involving expensive black-box functions are common in various engineering design problems. Currently, metamodel-based multi-objective optimization methods using static metamodels are routinely used to solve these MOO problems. The major challenge to static metamodel-based MOO methods lies in solution accuracy, which heavily depends on the accuracy of the metamodels. While sequential or successive methods can be used to improve the accuracy of a metamodel in a small local region, they are not appropriate for MOO problems because the Pareto optima do not fall into the same small region in the design space. In this study, a novel metamodel-based MOO method using adaptive radial basis functions (ARBFs) was developed for efficiently and effectively solving MOO problems. The ARBFs are globally metamodels that are adaptively improved at various local regions where the Pareto optimal designs are located. The performance of this novel method was first evaluated using six mathematical functions. In addition, the ARBF-based MOO method was also used in a practical application, i.e., the crashworthiness optimization of a new kind of thin-walled structure named functionally graded multi-cell tube (FGMT) that was shown to be a good energy absorber in vehicle bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Chen WG, Wierzbicki T (2001) Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin Wall Struct 39(4):287–306

    Article  Google Scholar 

  • Chen G, Han X, Liu G, Jiang C, Zhao Z (2012) An efficient multi-objective optimization method for black-box functions using sequential approximate technique. Appl Soft Comput 12(1):14–27

    Article  Google Scholar 

  • Coello CAC, Lamont GB, Veldhuizen DAV (2007) Evolutionary algorithms for solving multi-objective problems (2nd edition). Springer Science, New York

    Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Fang HB, Wang Q (2008) On the effectiveness of assessing model accuracy at design points for radial basis functions. Commun Numer Methods Eng 24(3):219–235

    Article  MATH  Google Scholar 

  • Fang HB, Rais-Rohani M, Liu Z, Horstemeyer MF (2005) A comparative study of metamodeling methods for multi-objective crashworthiness optimization. Comput Struct 83(25–26):2121–2136

    Article  Google Scholar 

  • Gu XG, Sun GY, Li GY, Mao LC, Li Q (2013) A comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure. Struct Multidisc Optim 48(3):669–684

    Article  Google Scholar 

  • Hallquist JO (1998) LS-DYNA theoretical manual. Livemore Software Technology Corporation, California

    Google Scholar 

  • Hallquist JO (2003) LS-DYNA keyword user’s manual. Livemore Software Technology Corporation, California

    Google Scholar 

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905–1915

    Article  Google Scholar 

  • Hassing PM, Fang HB, Wang Q (2010) Identification of material parameters for McGinty’s model using adaptive RBFs and optimization. Struct Multidisc Optim 42(2):233–242

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems (2nd edition). MIT Press, Cambridge

    Google Scholar 

  • Hou SJ, Li Q, Long SY, Yang XJ, Li W (2008) Multiobjective optimization of multi-cell sections for the crashworthiness design. Int J Impact Eng 35(11):1355–1367

    Article  Google Scholar 

  • Hou SJ, Li Q, Long SY, Yang XJ, Li W (2009) Crashworthiness design for foam filled thin-wall structures. Mater Design 30:2024–2032

    Article  Google Scholar 

  • Hou SJ, Han X, Sun GY, Long SY, Lei W, Yang XJ, Li Q (2011) Multiobjective optimization for tapered circular tubes. Thin Wall Struct 49(7):855–863

    Article  Google Scholar 

  • Huband S, Hingston P, Barone L, While L (2006) A review of multi-objective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506

    Article  Google Scholar 

  • Jusuf A, Dirgantara T, Gunawan L, Putra IS (2015) Crashworthiness analysis of multi-cell prismatic structures. Int J Impact Eng 78:34–50

    Article  Google Scholar 

  • Kim HS (2002) New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin Wall Struct 40(4):311–327

    Article  Google Scholar 

  • Kitayma S, Srirat J, Arakawa M, Yamazaki K (2013) Sequential approximate multi-objective optimization using radial basis function network. Struct Multidisc Optim 48(3):501–515

    Article  Google Scholar 

  • Li GY, Xu FX, Sun GY, Li Q (2015) Crashworthiness study on functionally graded thin-walled structures. Int J Crashworthiness 20(3):280–300

    Article  Google Scholar 

  • Liao XT, Li Q, Yang XJ, Li W, Zhang WG (2008) A two-stage multi-objective optimization of vehicle crashworthiness under frontal impact. Int J Crashworthiness 13(3):279–288

    Article  Google Scholar 

  • Lu GX, Yu TX (2003) Energy absorption of structures and materials. CRC Press, Boca Raton

    Book  Google Scholar 

  • Messac A, Mullur AA (2008) A computationally efficient metamodeling approach for expensive multiobjective optimization. Optim Eng 9(1):37–67

    Article  MathSciNet  Google Scholar 

  • Montgomery DC (2009) Design and analysis of experiments, 7th edn. Wiley, Hoboken

    Google Scholar 

  • Park JS (1994) Optimal Latin-hypercube designs for computer experiments. J Statistical Planning Inference 39(1):95–111

    Article  MATH  Google Scholar 

  • Santosa SP, Wierzbicki T, Hanssen AG, Langseth M (2000) Experimental and numerical studies of foam-filled sections. Int J Impact Eng 24(5):509–534

    Article  Google Scholar 

  • Shan S, Wang GG (2004) An efficient Pareto set identification approach for multiobjective optimization on black-box functions. J Mech Des 127(5):866–874

    Article  MathSciNet  Google Scholar 

  • Sun GY, Song XG, Baek S, Li Q (2014) Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel. Struct Multidisc Optim 49(6):897–913

    Article  Google Scholar 

  • Sun GY, Tian XY, Fang JG, Xu FX, Li GY, Huang XD (2015) Dynamical bending analysis and optimization design for functionally graded thickness (FGT) tube. Int J Impact Eng 78:128–137

    Article  Google Scholar 

  • Tabatabaei M, Hakanen J, Hartikainen M, Miettinen K, Sindhya K (2015) A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods. Struct Multidisc Optim 52(1):1–25

    Article  MathSciNet  Google Scholar 

  • Tang ZL, Liu ST, Zhang ZH (2012) Energy absorption properties of non-convex multi-corner thin-walled columns. Thin Wall Struct 51:112–120

    Article  Google Scholar 

  • Tang ZL, Liu ST, Zhang ZH (2013) Analysis of energy absorption characteristics of cylindrical multi-cell columns. Thin Wall Struct 62:75–84

    Article  Google Scholar 

  • Tran TN, Hou SJ, Han X, Tan W, Nguyen NT (2014a) Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes. Thin Wall Struct 82:183–195

    Article  Google Scholar 

  • Tran TN, Hou SJ, Han X, Nguyen NT, Chau MQ (2014b) Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading. Int J Mech Sci 89:177–193

    Article  Google Scholar 

  • Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. Int J Mech Des 129(4):370–380

    MathSciNet  Google Scholar 

  • Yang BS, Yeun YS, Ruy WS (2002) Managing approximation models in multiobjective optimization. Struct Multidisc Optim 24(2):141–156

    Article  Google Scholar 

  • Yun Y, Yoon M, Nakayama H (2009) Multi-objective optimization based on meta-modeling by using support vector regression. Optim Eng 10(2):167–181

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Zhang H (2013) Energy absorption of multi-cell stub columns under axial compression. Thin Wall Struct 68:156–163

    Article  Google Scholar 

  • Zhang X, Zhang H (2014) Axial crushing of circular multi-cell columns. Int J Impact Eng 65:110–125

    Article  Google Scholar 

  • Zhang X, Cheng GD, Zhang H (2006) Theoretical prediction and numerical simulation of multi-cell square thin-walled structures. Thin Wall Struct 44(11):1185–1191

    Article  Google Scholar 

  • Zhang ZH, Liu ST, Tang ZL (2011) Comparisons of honeycomb sandwich and foam-filled cylindrical columns. Thin Wall Struct 49(9):1071–1079

    Article  Google Scholar 

  • Zhang Y, Sun GY, Xu XP, Li GY, Li Q (2014a) Multiobjective crashworthiness optimization of hollow and conical tubes for multiple load cases. Thin Wall Struct 82:331–342

    Article  Google Scholar 

  • Zhang X, Wen ZZ, Zhang H (2014b) Axial crushing and optimal design of square tubes with graded thickness. Thin Walled Struct 84:263–274

    Article  Google Scholar 

  • Zitzler K, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Fang, H., Wen, G. et al. An adaptive RBF-based multi-objective optimization method for crashworthiness design of functionally graded multi-cell tube. Struct Multidisc Optim 53, 129–144 (2016). https://doi.org/10.1007/s00158-015-1313-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1313-1

Keywords

Navigation