Skip to main content
Log in

Sensitivity analysis and optimization of eigenmode localization in continuum systems

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A model problem arising from optical design of photonic bandgap structure is investigated. That is, the optimization problem is to find the material inhomogeneity in a domain so that a particular eigenmode governed by the scalar Helmholtz equation is localized. The continuum sensitivity analysis of the objective function including the eigenmode is carried out. The derivative of the objective function with respect to the density function is obtained by the sensitivity problem and the adjoint problem in continuum systems. When the multiplicity of eigenmode happens, our strategy is to select the closest eigenmode to the current eigenmode. Four numerical examples in a square domain are studied, with different weight functions and initial density distributions. The numerical results illustrate the validity of the algorithm based on the continuum sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362

    Article  MathSciNet  Google Scholar 

  • Cheng X, Yang J (2013) Maximizing band gaps in two-dimensional photonic crystals in square lattices. J Opt Soc Amer A 30(11):2314–2319

    Article  MathSciNet  Google Scholar 

  • Cox SJ, Dobson DC (2000) Band structure optimization of two-dimensional photonic crystals in H-polarization. J Comput Phys 158(2):214–224

    Article  MATH  Google Scholar 

  • Dobson DC, Cox SJ (1999) Maximizing band gaps in two-dimensional photonic crystals. SIAM J Appl Math 59(6):2108–2120

    Article  MathSciNet  MATH  Google Scholar 

  • Dobson DC, Santosa F (2004) Optimal localization of eigenfunctions in an inhomogeneous medium. SIAM J Appl Math 64(3):762–774

    Article  MathSciNet  MATH  Google Scholar 

  • Figotin A, Klein A (1997) Localized classical waves created by defects. J Statist Phys 86(1–2):165–177

    Article  MathSciNet  Google Scholar 

  • Figotin A, Klein A (1998) Localization of light in lossless inhomogeneous dielectrics. J Opt Soc Amer A 15 (5):1423–1435

    Article  Google Scholar 

  • Fox RL, Kapoor MP (1968) Rates of change of eigenvalues and eigenvectors. AIAA J 6(12):2426–2429

    Article  MATH  Google Scholar 

  • Giaquinta M, Hildebrandt S (2004) Calculus of variations I. Springer, Berlin

    Book  Google Scholar 

  • Gould SH (1995) Variational Methods for Eigenvalue Problems: An Introduction to the Methods of Rayleigh, Ritz, Weinstein and Aronszajn. Dover Publications, New York

    Google Scholar 

  • Gu Y, Cheng X (2013) A numerical approach for defect modes localization in an inhomogeneous medium. SIAM J Appl Math 73(6):2188–2202

    Article  MathSciNet  MATH  Google Scholar 

  • Inzarulfaisham A, Azegami H (2004) Solution to boundary shape optimization problem of linear elastic continua with prescribed natural vibration mode shapes. Struct Multidisc Optim 27(3):210–217

    Article  Google Scholar 

  • John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  Google Scholar 

  • Kao C, Osher S, Yablonovitch E (2005) Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl Phys B 81(2–3):235–244

    Article  Google Scholar 

  • Klein A, Figotin A (1998) Midgap defect modes in dielectric and acoustic media. SIAM J Appl Math 58 (6):1748–1773

    Article  MathSciNet  MATH  Google Scholar 

  • Knight JC (2003) Photonic crystal fibres. Nature 424(6950):847–851

    Article  Google Scholar 

  • Kurt H, Citrin DS (2005) Annular photonic crystals. Opt express 13(25):10,316–10,326

    Article  Google Scholar 

  • Li H, Tai X (2007) Piecewise constant level set method for interface problems. Int Series Numer Math 154:307–316

    Article  MathSciNet  Google Scholar 

  • Li Z, Gu B, Yang G (1998) Large absolute band gap in 2D anisotropic photonic crystals. Phys Rev Lett 81(12):2574–2577

    Article  Google Scholar 

  • Lourtioz JM, Benisty H, Berger V, Gerard JM, Maystre D (2008) Photonic crystals: towards nanoscale photonic devices. Springer

  • Maeda Y, Nishiwaki S, Izui K, Yoshimura M, Matsui K, Terada K (2006) Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes. Int J Numer Meth Eng 67(5):597–628

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson RB (1976) Simplified calculation of eigenvector derivatives. AIAA J 14(9):1201–1205

    Article  MathSciNet  MATH  Google Scholar 

  • Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, New York

    Google Scholar 

  • Parr RG, Yang W (1989) Density-functional theory of atoms and molecules, vol 16. Oxford University Press

  • Sakoda K (2005) Optical properties of photonic crystals, vol 80, 2nd edn. Springer

  • Shi P, Huang K, Kang X, Li Y (2010) Creation of large band gap with anisotropic annular photonic crystal slab structure. Opt express 18(5):5221–5228

    Article  Google Scholar 

  • Shi P, Huang K, Li Y (2012) Photonic crystal with complex unit cell for large complete band gap. Opt Commun 285 (13–14):3128–3132

    Article  Google Scholar 

  • Tai X, Li H (2007) A piecewise constant level set method for elliptic inverse problems. Appl Numer Math 57(5):686–696

    Article  MathSciNet  MATH  Google Scholar 

  • Takezawa A, Kitamura M (2012) Cross-sectional shape optimization of whispering-gallery ring resonators. J Lightw Technol 30(17):2776–2782

    Article  Google Scholar 

  • Takezawa A, Kitamura M (2013) Sensitivity analysis and optimization of vibration modes in continuum systems. J Sound Vib 332(6):1553–1566

    Article  Google Scholar 

  • Takezawa A, Haraguchi M, Okamoto T, Kitamura M (2014) Cross-sectional optimization of whispering-gallery mode sensor with high electric field intensity in the detection domain. IEEE J Sel Top Quant Electron 20(6):5300110

    Article  Google Scholar 

  • Wang BP (1991) Improved approximate methods for computing eigenvector derivatives in structural dynamics. AIAA J 29 (6):1018–1020

    Article  Google Scholar 

  • Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062

    Article  Google Scholar 

  • Zhang Z, Chen W, Cheng X (2014) A penalty optimization algorithm for eigenmode optimization problem using sensitivity analysis. Commun Comput phys 15(3):776–796

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (Nos. 11201106 and 61303134), Natural Science Foundation of Zhejiang Province, China (No. LQ12A01001) and Key Project of the Major Research Plan of NSFC (No. 91130004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengfang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chen, W. & Cheng, X. Sensitivity analysis and optimization of eigenmode localization in continuum systems. Struct Multidisc Optim 52, 305–317 (2015). https://doi.org/10.1007/s00158-015-1235-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1235-y

Keywords

Navigation