Skip to main content
Log in

A local multiobjective optimization algorithm using neighborhood field

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A new local search algorithm for multiobjective optimization problems is proposed to find the global optima accurately and diversely. This paper models the cooperatively local search as a potential field, which is called neighborhood field model (NFM). Using NFM, a new Multiobjective Neighborhood Field Optimization (MONFO) algorithm is proposed. In MONFO, the neighborhood field can drive each individual moving towards the superior neighbor and away from the inferior neighbor. MONFO is compared with other popular multiobjective algorithms under twelve test functions. Intensive simulations show that MONFO is able to deliver promising results in the respects of accuracy and diversity, especially for multimodal problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbass HA, Sarker R (2002) The Pareto differential evolution algorithm. Proc Int J Artif Intell Tools 11(4):531–552

    Article  Google Scholar 

  • Adra SF, Griffin I, Fleming PJ (2005) Hybrid multiobjective genetic algorithm with a new adaptive local search process. In: Proc. Genetic Evol. Comput. Conf. (GECCO ’05), vol 1. New York, USA, pp 1009–1010

  • Bosman P, Thierens D (2003) The balance between proximity and diversity in multi-objective evolutionary algorithms. IEEE Trans Evol Comput 7(2):174–188

    Article  Google Scholar 

  • Brown M, Smith RE (2003) Effective use of directional information in multi-objective evolutionary computation. In: Proc. of the 2003 international conference on Genetic and Evolutionary Computation (GECCO’03). Chicago, IL, USA, pp 778–789

  • Chowdhury S, Dulikravich GS, Moral RJ (2009) Modified predator–prey algorithm for constrained and unconstrained multi-objective optimization. Int J Math Model Num Optim 1(1–2):1–38

    MATH  Google Scholar 

  • Coello CAC, Lamont GB (2004) Application of multi-objective evolutionary algorithms (advances in natural computation—vol 1). World Scientific Publishing Co. Pte. Inc., Singapore

    Book  Google Scholar 

  • Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  • Czyzak P, Jaszkiewicz A (1998) Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. J Multi-Crit Decis Anal 7(1):34–47

    Article  MATH  Google Scholar 

  • Deb K (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol Comput 7(3):205–230

    Article  Google Scholar 

  • Deb K, Agarwal S, Pratap A, Meyarivan T (2002a) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Deb K, Thiele L, Laumanns M, Zitzler E (2002b) Scalable multi-objective optimization test problems. In: Proc. of IEEE Congress on Evolutionary Computation (CEC), vol 1. Hawaii, USA, pp 825–830

  • Durillo JJ, Nebro AJ, Coello CAC, Garciía-Nieto J, Luna F, Alba E (2010) A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE Trans Evol Comput 14(4):618–635

    Article  Google Scholar 

  • Eberhart R, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In: Proc. of IEEE Congress on Evolutionary Computation (CEC), vol 1. Seoul, Korea, pp 81–86

  • Fliege J, Svaiter BF (2000) Steepest descent methods for multicriteria optimization. Math Method Oper Res 51(3):479–494

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston

    MATH  Google Scholar 

  • Horn J, Nafpliotis N, Goldberg DE (1994) A Niched Pareto genetic algorithm for multiobjective optimization. In: Proc. of the 1st conference on evolutionary computation, IEEE world congress on computational intelligence, vol 1, pp 82–87

  • Hu X, Eberhart R (2002) Multiobjective optimization using dynamic neighborhood particles warm optimization. In: Proc. of IEEE Congress on Evolutionary Computation (CEC), vol 2. Honolulu, HI, pp 1677–1681

  • Hu X, Huang Z, Wang Z (2003) Hybridization of the multiobjective evolutionary algorithms and the gradient based algorithms. In: Proc. IEEE congr. evol. comput., vol 2. Canberra, Australia, pp 870–877

  • Jin Y (2006) Multi-objective machine learning. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  • Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98

    Article  MathSciNet  Google Scholar 

  • Knowles JD, Corne D (2000) Approximating the nondominated front using the pareto archived evolution strategy. Evol Comput 8(2):149–172

    Article  Google Scholar 

  • Kukkonen S, Lampinen J (2005) GDE3: the third evolution step of generalized differential evolution. In: Proc. of IEEE Congress on Evolutionary Computation (CEC), vol 1. Edinburgh, Scotland, pp 443–450

  • Lara A, Sanchez G, Coello CAC, Schutze O (2010) HCS: a new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans Evol Comput 14(1):112–132

    Article  Google Scholar 

  • Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  • Molina D, Lozan M, Carcía-Martínez C, Herrera F (2010) Memetic algorithms for continuous optimisation based on local search chains. Evol Comput 18(1):27–63

    Article  Google Scholar 

  • Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method in multiobjective problems. In: Proc. of ACM Symptom Applied Computing (SAC). Madrid, Spain, pp 603–607

  • Schaffer JD (1984) Some experiments in machine learning using vector evaluated genetic algorithms (Artificial Intelligence, Optimization, Adaptation, Pattern Recognition). PhD Dissertation, Vanderbilt University, Nashville, TN, USA

  • Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proc. of 1998 IEEE Congress on Evolutionary Computation 1998 (CEC1998). AK, pp 69–73

  • Shukla PK (2007) Gradient based stochastic mutation operators in evolutionary multi-objective optimization. In: Proc. of the 8th Int. Conference on Adaptive and Natural Computing Algorithms (ICANNGA ’07). Warsaw, Poland, pp 58–66

  • Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous space. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Tan KC, Khor EF, Lee TH (2005) Performance assessment and comparison of MOEAs. In: Jain L, Wu X (eds) Multiobjective evolutionary algorithms and applications, advanced information and knowledge processing. Springer, London, pp 125–149

    Google Scholar 

  • Veldhuizen DV, Lamont G (1998) Multiobjective evolutionary algorithm research: a history and analysis. Air Force Inst. Technol., Dayton, OH, Tech. Rep. TR-98-03

  • Veldhuizen DAV, Lamont GB (2000) Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol Comput 8(2):125–147

    Article  Google Scholar 

  • Wanner EF, Guimarães FG, Takahashi RHC, Fleming PJ (2008) Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria. Evol Comput 16(2):185–224

    Article  Google Scholar 

  • Xu L, Chow TWS (2010) Self-organizing potential field network: a new optimization algorithm. IEEE Trans Neural Netw 21(9):1482–1495

    Article  Google Scholar 

  • Xue F, Sanderson AC, Graves RJ (2003) Pareto-based multi-objective differential evolution. In: Proc. of IEEE Congress on Evolutionary Computation (CEC), vol 2. Canberra, Australia, pp 862–869

  • Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. PhD thesis, Swiss Federal Institute of Technology Zurich, Switzerland

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. In: Proc. of EUROGEN 2001. Evolutionary methods for design, optimization and control with applications to industrial problems. Athens, Greece, pp 95–100

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommy W. S. Chow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Chow, T.W.S. A local multiobjective optimization algorithm using neighborhood field. Struct Multidisc Optim 46, 853–870 (2012). https://doi.org/10.1007/s00158-012-0800-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0800-x

Keywords

Navigation