Skip to main content
Log in

Sequential sampling for contour estimation with concurrent function evaluations

  • Brief Note
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We demonstrate the use of multiple surrogates and kriging believer for parallelizing surrogate-based contour estimation. For the demonstration example, we reduce wall clock time with minimal penalty in number of simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Notes

  1. An alternative definition is found in Ranjan et al. (2008) and Ranjan et al. (2011)

  2. That is \(E_G[F(\mathbf{x})] = \int_{\bar{g} - \epsilon(\mathbf{x})}^{{\bar{g}} + \epsilon(\mathbf{x})}{\left[ \epsilon(\mathbf{x}) - | \bar{g} - G (\mathbf{x}) | \right]f_{G}({g})d{g}}\). Further discussion and derivation can be found in Bichon (2010).

  3. Here, we used differential evolution as implemented in the companion software of Price et al. (2005) to solve this optimization problem.

  4. This version runs EGRA with surrogates that might not furnish uncertainty estimates. These estimates can certainly be provided by sophisticated schemes, e.g. the Bayesian approach (Seok et al. 2002). Here, we use the kriging uncertainty estimates with all other surrogates (Viana and Haftka 2009). Although theoretically less attractive, this heuristic avoids the overhead of estimating the uncertainty for each surrogate.

References

  • Basudhar A, Missoum S (2010) An improved adaptive sampling scheme for the construction of explicit boundaries. Struct Multidisc Optim 42(4):517–529

    Article  Google Scholar 

  • Bichon BJ (2010) Efficient surrogate modeling for reliability analysis and design. Ph.D. thesis, Vanderbilt University, Nashville

  • Bichon BJ, Eldred MS, Swiler LP, Mahadevan S, McFarland J (2008) Efficient global reliability analysis for nonlinear implicit performance functions. AIAA J 46(10):2459–2468

    Article  Google Scholar 

  • Dixon LCW, Szegö GP (1978) Towards global optimization 2. North Holland

  • Dubourg V, Sudret B, Bourinet JM (2011) Reliability-based design optimization using kriging surrogates and subset simulation. Struct Multidisc Optim (online first):1–18. doi:10.1007/s00158-011-0653-8

    Google Scholar 

  • Ginsbourger D, Le Riche R, Carraro L (2010) Kriging is well-suited to parallelize optimization. In: Tenne Y, Goh C-K, Hiot LM, Ong YS (eds) Computational intelligence in expensive optimization problems. Adaptation, learning, and optimization, vol 2. Springer, Berlin, pp 131–162

  • Gunn SR (1997) Support vector machines for classification and regression. University of Southampton, UK. Available at http://www.isis.ecs.soton.ac.uk/resources/svminfo/. Accessed 8 April 2011

  • Jekabsons G (2009) RBF: radial Basis Function interpolation for MATLAB/OCTAVE. Riga Technical University, Latvia. Available at http://www.cs.rtu.lv/jekabsons/regression.html. Accessed 8 April 2011

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  • Kuczera R, Mourelatos Z, Nikolaidis E (2010) A re-analysis methodology for system RBDO using a trust region approach with local metamodels. SAE International Journal of Materials & Manufacturing 3(1):356–371

    Google Scholar 

  • Lee I, Choi KK, Zhao L (2011) Sampling-based RBDO using the stochastic sensitivity analysis and dynamic kriging method. Struct Multidisc Optim 44(3):299–317

    Article  MathSciNet  Google Scholar 

  • Lophaven SN, Nielsen HB, Søndergaard J (2002) Dace—a matlab kriging toolbox. Technical University of Denmark, Denmark. Available at http://www2.imm.dtu.dk/~hbn/dace/. Accessed 8 April 2011

  • Mathworks contributors (2004) MATLAB The language of technical computing. The MathWorks, Inc, version 7.0 release 14 edn.

  • Picheny V, Ginsbourger D, Roustant O, Haftka RT, Kim N (2010) Adaptive design of experiments for accurate approximation of a target region. J Mech Des 132(7):9

    Article  Google Scholar 

  • Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Springer Verlag

  • Ranjan P, Bingham D, Michailidis G (2008) Sequential experiment design for contour estimation from complex computer codes. Technometrics 50(4):527–541

    Article  MathSciNet  Google Scholar 

  • Ranjan P, Bingham D, Michailidis G (2011) Errata. Technometrics 53(1):109–110

    Article  MathSciNet  Google Scholar 

  • Seok K, Hwang C, Cho D (2002) Prediction intervals for support vector machine regression. Commun Stat, Theory Methods 31(10):1887–1898

    Article  MathSciNet  MATH  Google Scholar 

  • Thacker WI, Zhang J, Watson LT, Birch JB, Iyer MA, Berry MW (2010) Algorithm 905: Sheppack: modified Shepard algorithm for interpolation of scattered multivariate data. ACM Trans Math Softw 37(3):1–20

    Article  Google Scholar 

  • Valdebenito MA, Schuëller GI (2010) A survey on approaches for reliability-based optimization. Struct Multidisc Optim 42(5):645–663

    Article  Google Scholar 

  • Viana FAC (2011) SURROGATES toolbox user’s guide. Available at http://sites.google.com/site/felipeacviana/surrogatestoolbox. Accessed 8 April 2011

  • Viana FAC, Haftka RT, Steffen Jr V (2009) Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct Multidisc Optim 39(4):439–457

    Article  Google Scholar 

  • Viana FAC, Haftka RT (2009) Importing uncertainty estimates from one surrogate to another. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA–2009–2237

  • Viana FAC, Haftka RT, Watson LT (2010) Why not run the efficient global optimization algorithm with multiple surrogates? In: 51th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA–2010–3090

Download references

Acknowledgments

We thank Mr. David Easterling and Mr. Nick Radcliffe for help in coding the linear Shepard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe A. C. Viana.

Additional information

This work was supported in part by U.S. Air Force Office of Scientific Research grant FA9550-09-1-0153 and National Science Foundation grant CMMI-0856431.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viana, F.A.C., Haftka, R.T. & Watson, L.T. Sequential sampling for contour estimation with concurrent function evaluations. Struct Multidisc Optim 45, 615–618 (2012). https://doi.org/10.1007/s00158-011-0733-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0733-9

Keywords

Navigation