Skip to main content
Log in

Uncertainty analysis of structural systems by perturbation techniques

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The formulation of an efficient method to evaluate the uncertainty of the structural response by applying perturbation techniques is described. Structural random variables are defined by their mean values, standard deviations and correlations. The uncertainty of structural behaviour is evaluated by the covariance matrix of response according to the developed perturbation methodology. It is also presented the procedure used to implement this method in a structural finite element framework. The implemented computational program allows, in only one structural analysis, to evaluate the mean value and the standard deviation of the structural response, defined in terms of displacements or forces. The proposed method is exact for problems with linear design functions and normal-distributed random variables. Results remain accurate for non-linear design functions if they can be approximated by a linear combination of the basic random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altus E, Totry E, Givli S (2005) Optimized functional perturbation method and morphology based effective properties of randomly heterogeneous beams. Int J Solids Struct 42(8):2345–2359

    Article  MATH  Google Scholar 

  • Ayyub BM (1998) Uncertainty modeling and analysis in Civil Engineering. CRC, Boca Raton, FL, p 506 ISBN:0849331080

    Google Scholar 

  • Ayyub BM, Gupta MM (1997) Uncertainty analysis in Engineering and Sciences: fuzzy logic, statistics, and neural network approach. Kluwer, Boston, p 370 ISBN:0792380304

    MATH  Google Scholar 

  • Beck JL, Au S-K, Vanik MW (2001) Monitoring structural health using a probabilistic measure. Comput Aided Civ Infrastruct Eng 16(1):1–11

    Article  Google Scholar 

  • Biondini F, Bontempi F, Malerba PG (2004) Fuzzy reliability analysis of concrete structures. Comput Struct 82(13–14):1033–1052

    Article  Google Scholar 

  • Casas JR, Matos JC, Figueiras JA, Vehi J, Garcia O, Herrero P (2005) Bridge monitoring and assessment under uncertainty via interval analysis. In: Augusti G, Schueller GI, Ciampoli M (eds) Proceedings of the 9th International Conference on Structural Safety and Reliability—ICOSSAR’05, Rome, June 19–23. Millpress, Rotterdam, pp 487–494

    Google Scholar 

  • CEB - Comité Euro-International du Béton (1993) CEB-FIP Model Code 1990—design code. Thomas Telford, London, p 437 ISBN:0727716964

    Google Scholar 

  • Choi S-K, Grandhi RV, Canfield RA (2004) Structural reliability under non-Gaussian stochastic behaviour. Comput Struct 82(13–14):1113–1121

    Article  Google Scholar 

  • Contreras H (1980) The stochastic finite element. Comput Struct 12(3):341–348

    Article  MATH  MathSciNet  Google Scholar 

  • DeLaurentis D, Marvris D (2000) Uncertainty modelling and management in multidisciplinary analysis and synthesis. In: Proceedings of the 38th AIAA Aerospace Sciences Meeting, paper No. AIAA 2000–0422, Reno, NV, January 10–13.

  • Delgado LEM (2006) A hybrid approach of knowledge-based reasoning for structural assessment. Ph.D. thesis, University of Girona, Spain, pp 142

  • Du X, Sudjianto A (2004) A saddlepoint approximation method for uncertainty analysis. In: Proceedings of the DETC’04—ASME 2004 International Design Engineering Technical Conferences and the Computers and Information in Engineering Conference, Salt Lake City, Utah, USA, September 28–October 2

  • Eibl J, Schmidt-Hurtienne B (1995) General outline of a new safety format. CEB Bull d’Inform 229:33–48

    Google Scholar 

  • Faber MH, Sorensen JD (2003) Reliability based code calibration—the JCSS approach. In: Der Kiureghian A, Madanat S, Pestana JM (eds) Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering—ICASP9, San Francisco, July 6–9. Millpress, Rotterdam, pp 927–935

    Google Scholar 

  • Faber MH, Stewart MG (2003) Risk assessment for civil engineering facilities: critical overview and discussion. Reliab Eng Syst Saf 80(2):173–184

    Article  Google Scholar 

  • Frangopol DM, Lee Y-H, William KJ (1996) Nonlinear finite element reliability analysis of concrete. J Eng Mech 122(12):1174–1182

    Article  Google Scholar 

  • Frangopol DM, Dong JS, Gharaibeh ES (2001) Reliability based life cycle management of highway bridges. J Comput Civil Eng 15(1):27–34

    Article  Google Scholar 

  • Garcia O, Matos JC, Vehi J, Sainz M, Casas JR (2004) Application of interval analysis to solve civil engineering problems - some examples. In: Proceedings of the 2nd European Workshop on Structural Health Monitoring, Munich, Germany, July 7–9, pp 93–100

  • Gardenyes E, Sainz MA, Jorba L, Calm R, Estela R, Mielgo H, Trepat A (2001) Modal intervals. Reliable Computing 7(2):77–111

    Article  MathSciNet  Google Scholar 

  • Gayton N, Mohamed A, Sorensen JD, Pendola M, Lemaire M (2004) Calibration methods for reliability-based design codes. Struct Saf 26(1):91–121

    Article  Google Scholar 

  • Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Courier Dover, New York, p 224 ISBN:0486428184

    Google Scholar 

  • Guan XL, Melchers RE (1994) An efficient formulation for limit state functions gradient calculation. Comput Struct 53(4):929–935

    Article  MATH  Google Scholar 

  • Haftka RT, Rosca RI, Nikolaidis E (2006) An approach for testing methods for modelling uncertainty. J Mech Design 128(5):1038–1049

    Article  Google Scholar 

  • Haldar A, Mahadevan S (2000) Reliability Assessment Using Stochastic Finite Element Analysis. Wiley, New York, p 344 ISBN:0471369616

    Google Scholar 

  • Hansen E (1992) Global optimization using interval analysis. Marcel Dekker, New York, p 230 ISBN:0824786963

    MATH  Google Scholar 

  • Henriques AAR (1998) Application of new safety concepts in the design of structural concrete. Ph.D. thesis, Faculty of Engineering of the University of Porto, pp 502 (in Portuguese).

  • Henriques AA, Figueiras J (2002). Model for the assessment of safety and serviceability of concrete bridges. In: Casas JR, Frangopol DM, Nowak AS (ed) Bridge maintenance, safety and management, Proceedings of the IABMAS First International Conference, Barcelona, July 14–17, CIMNE (CD-ROM)

  • Henriques AAR, Calheiros F, Figueiras JA (2002) Safety format for the design of concrete frames. Eng Comput 19(3):346–363

    Article  MATH  Google Scholar 

  • Huang B, Du X (2006) Uncertainty analysis by dimension reduction integration and saddlepoint approximations. J Mech Design 128(1):26–33

    Article  Google Scholar 

  • Hurtado JE (2002) Analysis of one-dimensional stochastic finite elements using neural networks. Probab Eng Mech 17(1):35–44

    Article  Google Scholar 

  • Imai K, Frangopol DM (2000) Geometrically nonlinear finite element reliability analysis of structural systems. I: theory. Comp Struct 77(6):677–691

    Article  Google Scholar 

  • Jaulin L, Kieffer M, Didrit O, Walter E (2001) Applied interval analysis. Springer, London, p 379 ISBN:1852332190

    MATH  Google Scholar 

  • Kharmanda G, Mohamed A, Lemaire M (2002) Efficient reliability-based design optimization using a hybrid space with application to finite element analysis. Struct Multidisc Optim 24(3):233–245

    Article  Google Scholar 

  • Liu P, Der Kiureghian A (1991) Finite element reliability of geometrically nonlinear uncertain structures. J Eng Mech 117(8):1806–1825

    Article  Google Scholar 

  • Maglaras G, Nikolaidis E, Haftka RT, Cudney HH (1997) Analytical–experimental comparison of probabilistic methods and fuzzy set based methods for designing under uncertainty. Struct Multidisc Optim 13(2–3):69–80

    Google Scholar 

  • Mahadevan S, Raghothamachar P (2000) Adaptive simulation for system reliability analysis of large structures. Comput Struct 77(6):725–734

    Article  Google Scholar 

  • Matos JC, Casas JR, Figueiras JA (2005) A new methodology for damage assessment of bridges through instrumentation: Application to the Sorraia River Bridge. Struct Infrastruct Eng 1(4):239–252

    Google Scholar 

  • Muhanna RL, Mullen, (2001) Uncertainty in mechanics problems—interval-based approach. J Eng Mech 127(6):557–566

    Article  Google Scholar 

  • Olsson A, Sandberg G, Dahlblom O (2003) On Latin hypercube sampling for structural reliability analysis. Struct Saf 25(1):47–68

    Article  Google Scholar 

  • Papadrakakis M, Lagaros ND (2002) Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comput Methods Appl Mech Eng 191:3491–3507

    Article  MATH  Google Scholar 

  • Pradlwarter HJ, Schueller GI, Schenk CA (2003) A computational procedure to estimate the stochastic dynamic response of large non-linear FE-models. Comput Methods Appl Mech Eng 192(7):777–801

    Article  MATH  Google Scholar 

  • Rais-Rohani M, Singh MN (2004) Comparison of global and local response surface techniques in reliability-based optimization of composite structures. Struct Multidisc Optim 26(5):333–345

    Article  Google Scholar 

  • Rao SS, Berke L (1997) Analysis of uncertain structural systems using interval analysis. AIAA J 35(4):727–735

    MATH  Google Scholar 

  • Rao SS, Sawyer P (1995) Fuzzy finite element approach for analysis of imprecisely defined systems. AIAA J 33(2):2364–2370

    Article  MATH  Google Scholar 

  • Reh S, Beley J-D, Mukherjee S, Khor EH (2006) Probabilistic finite element analysis using ANSYS. Struct Saf 28(1–2):17–43

    Article  Google Scholar 

  • Schenk CA, Schueller GI (2005) Uncertainty assessment of large finite element systems. Springer, New York, p 165 ISBN:3540253432

    MATH  Google Scholar 

  • Schueller GI (2001) Computational stochastic mechanics—recent advances. Comput Struct 79(22–25):2225–2234

    Article  Google Scholar 

  • Schueremans L, Gemert DV (2003) System reliability methods using advanced sampling techniques. In: Bedford T, Van Gelder P (eds) Safety and reliability, Proceedings of the Esrel 2003 Conference, Maastricht, The Netherlands, June 15–18. Routledge, London, pp 1425–1432

    Google Scholar 

  • Spanos PD, Ghanem R (1989) Stochastic finite element expansion for random media. J Eng Mech 115(5):1035–1053

    Google Scholar 

  • Thomos GC, Trezos CG (2006) Examination of the probabilistic response of reinforced concrete structures under static non-linear analysis. Eng Struct 28(1):120–133

    Article  Google Scholar 

  • Wang CS, Wu F, Chang FK (2001) Structural health monitoring from fiber-reinforced composites to steel-reinforced concrete. Smart Mater Struct 10:548–552

    Article  Google Scholar 

  • Yu X, Choi KK, Chang K-H (1997) A mixed design approach for probabilistic structural durability. Struct Multidisc Optim 14(2–3):81–90

    Google Scholar 

  • Zhang J, Ellingwood B (1996) SFEM for reliability with material nonlinearities. J Struct Eng 122(6):701–704

    Article  Google Scholar 

  • Zou T, Mahadevan S (2006) Versatile formulation for multiobjective reliability-based design optimization. J Mech Design 128(6):1217–1226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Henriques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriques, A.A., Veiga, J.M.C., Matos, J.A.C. et al. Uncertainty analysis of structural systems by perturbation techniques. Struct Multidisc Optim 35, 201–212 (2008). https://doi.org/10.1007/s00158-007-0218-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-007-0218-z

Keywords

Navigation