Skip to main content
Log in

Cost function analysis in the structural optimization of steel frames

  • Industrial applications
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

An objective function used in structural optimization should be formulated in such a way that the most economic solution can be found. However, the objective function is usually simplified to represent the weight, disregarding the fabrication and erection costs of the structure. The paper presents a very detailed objective function that considers the self-manufacturing costs of the whole structure. The cost function includes all essential fabrication and erection activities. It considers both manufacturing costs as well as material costs. It is formulated in an open manner, offering users the possibility to define their own parameters on the basis of a certain production line. The cost function is implemented into the optimization system for planar steel frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aichele, G. 1994: Leistungskennwerte für Schweissen und Schneiden. Düsseldorf: Deutscher Verlag für Schweisstechnik DVS-Verlag GmbH

  2. CEN, European Committee for Standardisation 1992: European Prestandard ENV 1993-1-1, Eurocode 3: Design of steel structures – General rules and rules for buildings

  3. CEN, European Committee for Standardisation 1994: European Prestandard ENV 1991, Eurocode 1: Basis of design and actions on strctures

  4. Czesany, G. 1972: Kostenrechnung beim Schweissen. Essen: Vulkan-Verlag Dr. W. Classen

  5. Erbatur, F.; Hasançebi, O.; Tütüncü, İ.; Kılıç, H. 2000: Optimal design of planar and space structures with genetic algorithms. Comput. Struct. 75(2), 209–224

    Google Scholar 

  6. Farkas, J. 1991: Fabrication aspects in the optimum design of welded strctures. Struct. Optim.3, pp. 51–58

    Google Scholar 

  7. Farkas, J.; Jármai, K. 1993: Minimum cost design of laterally loaded welded rectangular cellular plates. In: Proceedings of the 1993 World Congress on Structural Optimization, Vol. 1. (held in Rio de Janeiro), pp. 205–212

  8. Farkas, J.; Jármai, K. 1995: Multiobjective optimal design of welded box beams. Microcomput. Civ. Eng.10, 249–255

    Google Scholar 

  9. Fiacco, V.A.; McCormick, P.G. 1990: Nonlinear programming, sequential unconstrained minimization techniques, Philadelphia: Society for Industrial and Applied Mathematics

  10. Grierson, D.; Lee, W. 1984: Optimal synthesis of steel frameworks using standard sections. J. Struct. Mech.12(3), 335–370

    Google Scholar 

  11. Hager, K.; Balling, R. 1988: New approach for discrete structural optimization. J. Struct. Eng. 114(5), 1120–1134

    Google Scholar 

  12. Jármai, K.; Farkas J. 1999: Cost calculation and optimisation of welded steel structures. J. Constr. Steel Res.50(2), 115–135

    Google Scholar 

  13. Kameshki, E.S.; Saka, M.P. 2001: Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm. Comput. Struct. 79(17), 1593–1604

    Google Scholar 

  14. Krajnc, A. 1998: Optimal design of steel frames (in Slovenian), Ph.D. Thesis, Faculty of Civil and Geodetic Engineering, University of Ljubljana

  15. Krajnc, A.; Beg, D. 2000: Heuristic approach to steel frame structural optimisation. In: Ivanyi, M.; Muzeau, J.P.; Topping, B.H.V. (eds.) Computational steel structures technology, 155–164, Edinburgh: Civil-Comp Press

  16. Kravanja, S. 1996: Simultaneous topology and parameter optimization of structures (in Slovenian), Ph.D. Thesis, Faculty of Civil Engineering, University of Maribor, pp. 121–122

  17. Pavlovčič, L. 2002: Objective function analysis at the optimization of steel frames (in Slovenian), Master’s Thesis, Faculty of Civil and Geodetic Engineering, University of Ljubljana

  18. Polajnar, A. 1991: Handbook for planning and managing the manufacturing processes (in Slovenian), Faculty of Mechanical Engineering, University of Maribor

  19. Saka, M.P.; Kameshki, E.S. 1998: Optimum design of unbraced rigid frames. Comput. Struct.69(4), 433–442

    Google Scholar 

  20. Simões, L.M.C. 1996: Optimization of frames with semi-rigid connections. Comput. Struct.60(4), 531–539

    Google Scholar 

  21. Xu, L.; Grierson, D.E. 1993: Computer-automated design of semirigid steel frameworks. J. Struct. Eng.119(6), 1740–1760

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Beg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlovčič, L., Krajnc, A. & Beg, D. Cost function analysis in the structural optimization of steel frames. Struct Multidisc Optim 28, 286–295 (2004). https://doi.org/10.1007/s00158-004-0430-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-004-0430-z

Keywords

Navigation