Skip to main content
Log in

Optimal shakedown loading for circular plates

  • Research paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Optimization of shakedown loading under constrained residual displacement is considered for elastic and perfectly plastic circular plates. The load variation bounds, which satisfy the optimality criterion in concert with plate-strength and stiffness requirements, are identified. The actual strain fields of the plate depend on the loading history. Thus, the load optimization problem at shakedown is stated as a pair of problems that are executed in parallel: the main load optimization and the verification of the prescribed magnitudes of the bounds on the residual deflections. The problem must be solved by iteration. The Rozen projected gradient method is applied. A mechanical interpretation of the Rozen optimality criterion is given, which permits the simplification of the mathematical model for load optimization and the formulation of the solution algorithm. Numerical examples include circular annular plates with and without a rigid inclusion. The results are valid under the assumption of small displacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkočiunas, J.; Borkowski, A.; König, J.A. 1981: Improved bounds for displacements at shakedown. Comput. Methods Appl. Eng. 28, 365–376

    Google Scholar 

  2. Atkočiunas, J. 1997: Compatibility equations of strains for degenerate shakedown problems. Comput. Struct. 63(2), 277–282

    Google Scholar 

  3. Atkočiunas, J. 1999: Mathematical models of optimization problems at shakedown. Mech. Res. Commun. 26(3), 319–326

    Google Scholar 

  4. Bazaraa, M.S.; Shetty, C.M. 1979: Nonlinear programming theory and algorithms. New York, Chichester, Brisbane, Toronto: John Wiley

  5. Belytschko, T. 1972: Plane stress shakedown analysis by finite elements. Int. J. Mech. Sci. 14, 619–625

    Google Scholar 

  6. Borkowski, A.; Atkočiunas, J. 1975: Optimal design for cyclic loading. IUTAM, Optimization in structural design (Symposium held in Warsaw 1973), pp. 432–440. Berlin: Springer-Verlag

  7. Borkowski, A.; Kleiber, M. 1980: On numerical approach to shakedown analysis of structures. Comput. Methods Appl. Mech. Eng. 22(3), 101–119

    Google Scholar 

  8. Cohn, M.Z.; Parimi, S.R. 1973: Optimal design of plastic structures for fixed and shakedown loadings. J. Appl. Mech. 40, 595–599

    Google Scholar 

  9. Cohn, M.Z.; Maier, G. (eds.) 1978: Engineering plasticity by mathematical programming. New York: Pergamon Press

  10. Corradi, L.; Zavelani, A. 1974; Linear programming approach to shakedown analysis of structures. Comput. Methods Appl. Mech. Eng. 3, 37–53

    Google Scholar 

  11. Čyras, A. 1983: Mathematical models for the analysis and optimization of elastoplastic structures. Chichester: Ellis Horwood

  12. Capurso, M.; Corradi, L.; Maier, G. 1978: Bounds on deformations and displacements in shakedown theory. In: Proc. Materiaux et Structures sous Chargement Cyclique (held in Palaiseau, France), pp. 213–244

  13. Dorosz, S. 1978: An improved bound to maximum deflections of elastic-plastic structures at shakedown. J. Struct. Mech. 6, 267–287

    Google Scholar 

  14. Gallager, R.H. 1975: Finite element analysis. Fundamentals. Englewood Clifts: Prentice–Hall

  15. Giambanco, F.; Polizzolo, L.; Polizzotto, C. 1994: Optimal shakedown design of circular plates. J. Eng. Mech. 120(12), 2535–2555

    Google Scholar 

  16. Gutkowski, W.; Bauer, J.; Iwanow, Z. 1990: Explicit formulation of Kuhn–Tucker necessary conditions in structural optimization. Comput. Struct. 3, 753–758

    Google Scholar 

  17. Jarmolajeva, E.; Atkočiunas, J. 2002: Shakedown loading optimization under constrained residual displacements – formulation and solution for circular plates. J. Civ. Eng. Manage. VIII(1), 54–67

    Google Scholar 

  18. Kalanta, S. 1995: The equilibrium finite elements in computation of elastic structures. Statyba (Civ. Eng.) 1, 25–47 (in Russian)

    Google Scholar 

  19. Kaliszky, S. 1996: Elasto-plastic analysis with limited plastic deformations and displacements. J. Mech. Struct. Mach. 24, 39–50

    Google Scholar 

  20. Kaliszky, S.; Lógó, J. 2001: Layout and shape optimization of elastoplastic discs with bounds on deformations and displacement. J. Mech. Struct. Mach. 30, 171–191

    Google Scholar 

  21. Kaneko, L.; Maier, G. 1981: Optimum design of plastic structures under displacement’s constraints. J. Comput. Methods Appl. Mech. Eng. 27, 369–392

    Google Scholar 

  22. König, J.A. 1966: Theory of shakedown of elasic-plastic structures. Arch. Mech. Stos. 18, 227–238

    Google Scholar 

  23. König, J.A. 1987: Shakedown of elastic-plastic structures. Amsterdam: Elsevier

  24. Koiter, W.T. 1960: General theorems for elastic-plastic solids. In: Sheddon, I.N; Hills, R. (eds.) Progress in Solid Mechanics, pp. 165–221. Amsterdam: North Holland

  25. Lange–Hasen, P. 1998: Comparative study of upper bound methods for the calculation of residual deformation after shakedown. Technical University of Denmark, Dept. of Struct. Engineering and Materials. Series R No. 49

  26. Maier, G. 1970: A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes. Meccanica 5, 54–66

    Google Scholar 

  27. Maier, G.; Grierson, D.E.; Best, M.J. 1977: Mathematical programming methods for deformations analysis at plastic collapse. Comput. Struct. 7, 599–612

    Google Scholar 

  28. Mróz, Z.; Weichert, D.; Dorosz, St. (eds.) 1995: Inelastic behavior of structures under variable loads. Dordrecht: Kluwer Academic Publishers

  29. Polizzoto, C. 1979: Upper bounds on plastic strains for elastic-perfectly plastic solids subjected to variable loads. Int. J. Mech. Sci. 21, 317–327

    Google Scholar 

  30. Ponter, A.R.S. 1972: An upper bound to the small displacements of elastic perfectly plastic structures. J. Appl. Mech. 39, 959–963

    Google Scholar 

  31. Rozvany, G.I.N. 1976: Optimal design of flexural systems. Oxford: Pergamon Press

  32. Stein, E.; Zhang, G.; Mahnken, R. 1993: Shakedown analysis for perfectly plastic and kinematic hardening materials. CISM, Progress in computational analysis of inelastic structures. Wien, New York: Springer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Atkočiunas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkočiunas, J., Jarmolajeva, E. & Merkevičiutė , D. Optimal shakedown loading for circular plates. Struct Multidisc Optim 27, 178–188 (2004). https://doi.org/10.1007/s00158-003-0308-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-003-0308-5

Keywords

Navigation