Skip to main content

Advertisement

Log in

A material optimization model to approximate energy bounds for cellular materials under multiload conditions

  • Research paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper describes a computational model, based on inverse homogenization and topology design, for approximating energy bounds for two-phase composites under multiple load cases. The approach allows for the identification of possible single-scale cellular materials that give rise to the optimal bounds within this class of composites. A comparison of the computational results with the globally optimal bounds given via rank-N layered composites illustrates the behaviour for tension and shear load situations, as well as the importance of considering the shape of the basic unit cell as part of the design process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G. 2002: Shape Optimization by the Homogenization Method. Berlin, Heidelberg, New York: Springer-Verlag

  2. Allaire, G.; Aubry, S. 1999: On optimal microstructures for a plane shape optimization problem. Struct. Optim. 17, 86–94

    Google Scholar 

  3. Avellaneda, M. 1987: Iterated homogenization, differential effective medium theory, and applications. Commun. Pure Appl. Math. (New York) 40, 803–847

  4. Bendsøe, M.P. 1995: Optimization of Structural Topology, Shape and Material. Berlin, Heidelberg: Springer-Verlag

  5. Bendsøe, M.P.; Sigmund, O. 1999: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 635–654

    Google Scholar 

  6. Bendsøe, M.P.; Sigmund, O. 2003: Topology Optimization – Theory, Methods and Applications. Berlin, Heidelberg: Springer-Verlag

  7. Cherkaev, A.V. 2000: Variational Methods for Structural Optimization. Berlin, Heidelberg, New York: Springer-Verlag

  8. Cherkaev, A.V.; Krog, L.A.; Kucuk, I. 1998: Stable optimal design of two-component elastic structures. Control Cybern. 27(2), 265–282

    Google Scholar 

  9. Díaz, A.R.; Lipton, R. 1997: Optimal material layout for 3D elastic structures. Struct. Optim. 13(1), 60–64

    Google Scholar 

  10. Díaz, A.R.; Lipton, R. 2000: Optimal material layout in 3D elastic structures subjected to multiple loads. Mech. Struct. Mach. 28, 219–236

    Google Scholar 

  11. Francfort, G.A.; Murat, F.; Tartar, L. 1995: Fourth-order moments of nonnegative measures on S2 and applications. Arch. Rational Mech. Anal. 131(4), 305–333

    Google Scholar 

  12. Gibiansky, L.V.; Cherkaev, A.V. 1997: Design of composite plates of extremal rigidity. In: Cherkaev, A.V.; Kohn, R.V. (eds.) Topics in the Mathematical Modelling of Composite Materials, Vol. 31 of Progress in Nonlinear Differential Equations and Their Applications, pp. 95–137. Boston: Birkhäuser Boston

  13. Gibiansky, L.V.; Sigmund, O. 2000: Multiphase elastic composites with extremal bulk modulus. J. Mech. Phys. Solids 48(3), 461–498

    Google Scholar 

  14. Gibson, L.J.; Ashby, M.F. 1988: Cellular Solids, Structure and Properties. Oxford: Pergamon Press

  15. Hammer, V.B.; Bendsøe, M.P.; Lipton, R.; Pedersen, P. 1996: Parametrization in laminate design for optimal compliance. Int. J. Solids Struct. 34(4), 415–434

    Google Scholar 

  16. Krog, L.A.; Olhoff, N. 1997: Topology and reinforcement layout optimization of disk, plate, and shell structures. In: Rozvany, G.I.N. (ed.) Topology Optimization in Structural Mechanics, pp. 237–322. Berlin, Heidelberg, London: Springer-Verlag

  17. Krog, L.A.; Olhoff, N. 1999: Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput. Struct. 72, 535–563

    Google Scholar 

  18. Lipton, R. 1994: On optimal reinforcement of plates and choice of design parameters. Control Cybern. 23, 481–493

    Google Scholar 

  19. Lipton, R. 1994: Saddle-point theorem with application to structural optimization. JOTA 81, 549–568

    Google Scholar 

  20. Lipton, R.; Díaz, A.R. 1997: Reinforced Mindlin plates with extremal stiffness. Int. J. Solids Struct. 24(28), 3691–3704

    Google Scholar 

  21. Neves, M.M.; Rodrigues, H.C.; Guedes, J.M. 2000: Optimal design of periodic linear elastic microstructures. Comput. Struct. 76, 421–429

    Google Scholar 

  22. Neves, M.M.; Sigmund, O.; Bendsøe, M.P. 2002: Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. Int. J. Numer. Methods Eng. 54(6), 809–834

    Google Scholar 

  23. Pedersen, P. 1989: On optimal orientation of orthotropic materials. Struct. Optim. 1, 101–106

    Google Scholar 

  24. Rodrigues, H.C.; Guedes, J. M.; Bendsøe, M.P. 2002: Hierarchical optimization of material and structure. Struct. Optim. 24, 1–10

    Google Scholar 

  25. Sigmund, O. 1994: Design of material structures using topology optimization. PhD thesis, Department of Solid Mechanics, Technical University of Denmark

  26. Sigmund, O. 1994: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31(17), 2313–2329

    Google Scholar 

  27. Sigmund, O. 1995: Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351–368

    Google Scholar 

  28. Sigmund, O. 1996: Some inverse problems in topology design of materials and mechanisms. In: Bestle, D.; Schielen, W. (eds.) Symposium on Optimization of Mechanical Systems, pp. 277–284. Netherlands, IUTAM: Kluwer

  29. Sigmund, O. 2000: A new class of extremal composites. J. Mech. Phys. Solids 48(2), 397–428

    Google Scholar 

  30. Sigmund, O.; Petersson, J. 1998: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16(1), 68–75

    Google Scholar 

  31. Terada, K.; Kikuchi, N. 1996: Microstructural design of composites using the homogenization method and digital images. Mater. Sci. Res. Int., 2, 65–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.P. Bendsøe .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guedes , J., Rodrigues , H. & Bendsøe , M. A material optimization model to approximate energy bounds for cellular materials under multiload conditions. Struct Multidisc Optim 25, 446–452 (2003). https://doi.org/10.1007/s00158-003-0305-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-003-0305-8

Keywords

Navigation