Skip to main content
Log in

Open induction in a bounded arithmetic for TC0

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The elementary arithmetic operations \({+,\cdot,\le}\) on integers are well-known to be computable in the weak complexity class TC0, and it is a basic question what properties of these operations can be proved using only TC0-computable objects, i.e., in a theory of bounded arithmetic corresponding to TC0. We will show that the theory VTC 0 extended with an axiom postulating the totality of iterated multiplication (which is computable in TC0) proves induction for quantifier-free formulas in the language \({\langle{+,\cdot,\le}\rangle}\) (IOpen), and more generally, minimization for \({\Sigma_{0}^{b}}\) formulas in the language of Buss’s S 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrington D.A.M., Immerman N., Straubing H.: On uniformity within NC 1. J. Comput. Syst. Sci. 41(3), 274–306 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Basu S., Pollack R., Roy M.-F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Beame P.W., Cook S.A., Hoover H.J.: Log depth circuits for division and related problems. SIAM J. Comput. 15(4), 994–1003 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boughattas S., Kołodziejczyk L.A.: The strength of sharply bounded induction requires MSP. Ann. Pure Appl. Logic 161(4), 504–510 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buss, S.R.: Bounded Arithmetic. Bibliopolis, Naples (1986). Revision of 1985 Princeton University Ph.D. thesis

  6. Chandra A.K., Stockmeyer L., Vishkin U.: Constant depth reducibility. SIAM J. Comput. 13(2), 423–439 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chiu A.Y., Davida G.I., Litow B.E.: Division in logspace-uniform NC 1. RAIRO Theor. Inform. Appl. 35(3), 259–275 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cook S.A., Nguyen P.: Logical Foundations of Proof Complexity. Perspectives in Logic. Cambridge University Press, New York (2010)

    Google Scholar 

  9. Engler A.J., Prestel A.: Valued fields. Springer Monographs in Mathematics. Springer, Berlin (2005)

    Google Scholar 

  10. Hajnal A., Maass W., Pudlák P., Szegedy M., Turán G.: Threshold circuits of bounded depth. J. Comput. Syst. Sci. 46(2), 129–154 (1993)

    Article  MATH  Google Scholar 

  11. Hesse W., Allender E., Barrington D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65(4), 695–716 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Immerman N.: Expressibility and parallel complexity. SIAM J. Comput. 18(3), 625–638 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jeřábek E.: The strength of sharply bounded induction. Math. Logic Q. 52(6), 613–624 (2006)

    Article  MATH  Google Scholar 

  14. Jeřábek E.: On theories of bounded arithmetic for NC 1. Ann. Pure Appl. Logic 162(4), 322–340 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jeřábek E.: Root finding with threshold circuits. Theor. Comput. Sci. 462, 59–69 (2012)

    Article  MATH  Google Scholar 

  16. Johannsen, J.: On the weakness of sharply bounded polynomial induction. In: Gottlob, G. Leitsch, A., Mundici, D. (eds.) Computational logic and proof theory. Proceedings of Kurt Gödel Colloquium ’93, Lecture Notes in Computer Science, vol. 713, pp. 223–230. Springer (1993)

  17. Johannsen, J.: Weak bounded arithmetic, the Diffie–Hellman problem, and Constable’s class K. In: Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, pp. 268–274 (1999)

  18. Johannsen, J., Pollett, C.: On proofs about threshold circuits and counting hierarchies (extended abstract). In: Proceedings of the 13th Annual IEEE Symposium on Hogic in Computer Science, pp. 444–452 (1998)

  19. Johannsen, J., Pollett, C.: On the \({\Delta^b_1}\)-bit-comprehension rule. In: Buss, S.R., Hájek, P., Pudlák, P. (eds.) Logic Colloquium ’98: Proceedings of the 1998 ASL European Summer Meeting held in Prague, Czech Republic, pp. 262–280. ASL (2000)

  20. Kołodziejczyk L.A.: Independence results for variants of sharply bounded induction. Ann. Pure Appl. Logic 162(12), 981–990 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory, Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)

  22. Maciel A., Thérien D.: Efficient threshold circuits for power series. Inf. Comput. 152(1), 62–73 (1999)

    Article  MATH  Google Scholar 

  23. Mantzivis S.G.: Circuits in bounded arithmetic part I. Ann. Math. Artif. Intell. 6(1–3), 127–156 (1991)

    MathSciNet  Google Scholar 

  24. Nguyen, P., Cook, S.A.: Theories for TC 0 and other small complexity classes. Log. Methods Comput. Sci. 2(1) (2006). Paper no. 3

  25. Parberry I., Schnitger G.: Parallel computation with threshold functions. J. Comput. Syst. Sci. 36(3), 278–302 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Reif J.H.: Logarithmic depth circuits for algebraic functions. SIAM J. Comput. 15(1), 231–242 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Reif J.H., Tate S.R.: On threshold circuits and polynomial computation. SIAM J. Comput. 21(5), 896–908 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Scott, D.: On completing ordered fields. In: Luxemburg, W.A.J. (ed.) Applications of Model Theory to Algebra, Analysis, and Probability, pp. 274–278. Holt, Rinehart and Winston, New York (1969)

  29. Shepherdson J.C.: A nonstandard model for a free variable fragment of number theory. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 12(2), 79–86 (1964)

    MATH  MathSciNet  Google Scholar 

  30. Takeuti, G.: Sharply bounded arithmetic and the function a ∸ 1. In: Sieg, W. (ed.) Hogic and Computation, Proceedings of a Workshop held at Carnegie Mellon University, 30 June–2 July 1987, Contemporary Mathematics, vol. 106, pp. 281–288. American Mathematical Society (1990)

  31. Vámos P.: Decomposition problems for modules over valuation domains. J. Lond. Math. Soc. 2(1), 10–26 (1990)

    Article  Google Scholar 

  32. Wilkie, A.J.: Some results and problems on weak systems of arithmetic. In: Macintyre, A. (ed.) Logic Colloquium ’77, pp. 285–296. North-Holland (1978)

  33. Zambella D.: Notes on polynomially bounded arithmetic. J. Symb. Logic 61(3), 942–966 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Jeřábek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeřábek, E. Open induction in a bounded arithmetic for TC0 . Arch. Math. Logic 54, 359–394 (2015). https://doi.org/10.1007/s00153-014-0414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-014-0414-7

Keywords

Mathematics Subject Classification

Navigation