Skip to main content
Log in

Some axioms for constructive analysis

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

This note explores the common core of constructive, intuitionistic, recursive and classical analysis from an axiomatic standpoint. In addition to clarifying the relation between Kleene’s and Troelstra’s minimal formal theories of numbers and number-theoretic sequences, we propose some modified choice principles and other function existence axioms which may be of use in reverse constructive analysis. Specifically, we consider the function comprehension principles assumed by the two minimal theories EL and M, introduce an axiom schema CFd asserting that every decidable property of numbers has a characteristic function, and use it to describe a precise relationship between the minimal theories. We show that the axiom schema AC00 of countable choice can be decomposed into a monotone choice schema AC m00 (which guarantees that every Cauchy sequence has a modulus) and a bounded choice schema BC00. We relate various (classically correct) axiom schemas of continuous choice to versions of the bar and fan theorems, suggest a constructive choice schema AC1/2,0 (which incidentally guarantees that every continuous function has a modulus of continuity), and observe a constructive equivalence between restricted versions of the fan theorem and correspondingly restricted bounding axioms \({AB_{1/2,0}^{2^{\mathbb{N}}}}\). We also introduce a version WKL!! of Weak König’s Lemma with uniqueness which is intermediate in strength between WKL and the decidable fan theorem FTd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, J.: A separation result for varieties of Brouwer’s fan theorem. In: Arai, T., et al. (eds.) Proceedings of the 10th Asian Logic Conference, pp. 85–92, Kobe, Japan, World Scientific (2010)

  2. Berger J., Ishihara H.: Brouwer’s fan theorem and unique existence in constructive analysis. Math. Log. Quart. 51, 360–364 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bridges, D.: A reverse look at Brouwer’s fan theorem. In: One hundred years of intuitionism (1907–2007), The Cerisy Conference. Springer, Berlin, pp. 316–325 (2008)

  4. Bridges D., Richman F.: Varieties of Constructive Mathematics. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  5. Diener H., Loeb I.: Sequences of real functions on [0,1] in constructive reverse mathematics. Ann. Pure Appl. Logic 157, 50–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Heyting, A.: Die formalen regeln der intuitionistischen logik, Sitzber. Preuss. Akad. Wiss. (phys.-math. Klasse), Berlin (1930), 42–56, English trans. in Mancosu, P., From Brouwer to Hilbert, Oxford 1998, 311–327 (1998)

  7. Heyting, A.: Die formalen regeln der intuitionistischen mathematik II, Sitzber. Preuss. Akad. Wiss. (phys.-math. Klasse), Berlin 57–71 (1930)

  8. Heyting, A.: Sur la logique intuitionniste. Bull. Acad. Royale Belgique 16, 957–963 (1930), English trans. by A. Rocha in Mancosu, P., op. cit., 306–310 (1930)

    Google Scholar 

  9. Ishihara H.: Constructive reverse mathematics: compactness properties. In: Crosilla, L., Schuster, P. (eds) From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics, pp. 245–267. Oxford University Press, Oxford (2005)

    Google Scholar 

  10. Kleene S.C.: Introduction to Metamathematics. van Nostrand, Princeton (1952)

    MATH  Google Scholar 

  11. Kleene, S.C.: Formalized recursive functionals and formalized realizability, Memoirs, no. 89. Amer. Math. Soc. (1969)

  12. Kleene S.C., Vesley R.E.: The foundations of intuitionistic mathematics, especially in relation to recursive functions. North Holland, Amsterdam (1965)

    MATH  Google Scholar 

  13. Loeb I.: Equivalents of the (weak) fan theorem. Ann. Pure Appl. Logic 132, 51–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moschovakis J.R.: Can there be no nonrecursive functions. Jour. Symb. Logic 36, 309–315 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. van Oosten J.: Lifschitz’ realizability. Jour. Symb. Logic 55, 805–821 (1990)

    Article  MATH  Google Scholar 

  16. Schwichtenberg H.: A direct proof of the equivalence between Brouwer’s fan theorem and König’s lemma with a uniqueness hypothesis. Jour. Univers. Comp. Sci. 11, 2086–2095 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Troelstra, A.S.: Intuitionistic formal systems. In: Troelstra, A.S. (ed.) Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture Notes in Math., Springer, Berlin (1973)

  18. Troelstra A.S.: Note on the fan theorem. Jour. Symb. Logic 39, 584–596 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Troelstra A.S., van Dalen D.: Constructivism in Mathematics: An Introduction, Volumes I and II. North-Holland, Amsterdam (1988)

    Google Scholar 

  20. Veldman, W.: Brouwer’s approximate fixed-point theorem is equivalent to Brouwer’s fan theorem. In: Lindstrom, S., et al. (ed.) Logicism, Intuitionism, and Formalism, Synthese Library 341, pp. 277–299. Springer, Netherlands (2009)

  21. Weinstein S.: Some applications of Kripke models to formal systems of intuitionistic analysis. Ann. Math. Logic 16, 1–32 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Rand Moschovakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moschovakis, J.R., Vafeiadou, G. Some axioms for constructive analysis. Arch. Math. Logic 51, 443–459 (2012). https://doi.org/10.1007/s00153-012-0273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-012-0273-z

Keywords

Mathematics Subject Classification

Navigation